Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Int J Mol Sci ; 20(6)2019 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-30901861

RESUMEN

Multiple sclerosis (MS) is the most common inflammatory disorder of the central nervous system (CNS) in young adults leading to severe disability. Besides genetic traits, environmental factors contribute to MS pathogenesis. Cigarette smoking increases the risk of MS in an HLA-dependent fashion, but the underlying mechanisms remain unknown. Here, we explored the effect of cigarette smoke exposure on spontaneous and induced models of experimental autoimmune encephalomyelitis (EAE) by evaluating clinical disease and, when relevant, blood leukocytes and histopathology. In the relapsing-remitting (RR) transgenic model in SJL/J mice, we observed very low incidence in both smoke-exposed and control groups. In the optico-spinal encephalomyelitis (OSE) double transgenic model in C57BL/6 mice, the early onset of EAE prevented a meaningful evaluation of the effects of cigarette smoke. In EAE models induced by immunization, daily exposure to cigarette smoke caused a delayed onset of EAE followed by a protracted disease course in SJL/J mice. In contrast, cigarette smoke exposure ameliorated the EAE clinical score in C57BL/6J mice. Our exploratory studies therefore show that genetic background influences the effects of cigarette smoke on autoimmune neuroinflammation. Importantly, our findings expose the challenge of identifying an animal model for studying the influence of cigarette smoke in MS.


Asunto(s)
Encefalomielitis Autoinmune Experimental/diagnóstico , Encefalomielitis Autoinmune Experimental/etiología , Antecedentes Genéticos , Fumar/efectos adversos , Edad de Inicio , Animales , Biopsia , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Encefalomielitis Autoinmune Experimental/metabolismo , Inmunohistoquímica , Ratones , Esclerosis Múltiple/diagnóstico , Esclerosis Múltiple/etiología , Esclerosis Múltiple/metabolismo , Fenotipo , Medición de Riesgo , Factores de Riesgo , Índice de Severidad de la Enfermedad , Médula Espinal/metabolismo , Médula Espinal/patología
2.
PLoS Pathog ; 12(7): e1005763, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27467575

RESUMEN

A major cause of the paucity of new starting points for drug discovery is the lack of interaction between academia and industry. Much of the global resource in biology is present in universities, whereas the focus of medicinal chemistry is still largely within industry. Open source drug discovery, with sharing of information, is clearly a first step towards overcoming this gap. But the interface could especially be bridged through a scale-up of open sharing of physical compounds, which would accelerate the finding of new starting points for drug discovery. The Medicines for Malaria Venture Malaria Box is a collection of over 400 compounds representing families of structures identified in phenotypic screens of pharmaceutical and academic libraries against the Plasmodium falciparum malaria parasite. The set has now been distributed to almost 200 research groups globally in the last two years, with the only stipulation that information from the screens is deposited in the public domain. This paper reports for the first time on 236 screens that have been carried out against the Malaria Box and compares these results with 55 assays that were previously published, in a format that allows a meta-analysis of the combined dataset. The combined biochemical and cellular assays presented here suggest mechanisms of action for 135 (34%) of the compounds active in killing multiple life-cycle stages of the malaria parasite, including asexual blood, liver, gametocyte, gametes and insect ookinete stages. In addition, many compounds demonstrated activity against other pathogens, showing hits in assays with 16 protozoa, 7 helminths, 9 bacterial and mycobacterial species, the dengue fever mosquito vector, and the NCI60 human cancer cell line panel of 60 human tumor cell lines. Toxicological, pharmacokinetic and metabolic properties were collected on all the compounds, assisting in the selection of the most promising candidates for murine proof-of-concept experiments and medicinal chemistry programs. The data for all of these assays are presented and analyzed to show how outstanding leads for many indications can be selected. These results reveal the immense potential for translating the dispersed expertise in biological assays involving human pathogens into drug discovery starting points, by providing open access to new families of molecules, and emphasize how a small additional investment made to help acquire and distribute compounds, and sharing the data, can catalyze drug discovery for dozens of different indications. Another lesson is that when multiple screens from different groups are run on the same library, results can be integrated quickly to select the most valuable starting points for subsequent medicinal chemistry efforts.


Asunto(s)
Antimaláricos/uso terapéutico , Conjuntos de Datos como Asunto , Descubrimiento de Drogas/métodos , Malaria/tratamiento farmacológico , Enfermedades Desatendidas/tratamiento farmacológico , Evaluación Preclínica de Medicamentos , Humanos , Bibliotecas de Moléculas Pequeñas
3.
Front Immunol ; 12: 726492, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34421928

RESUMEN

Tumors are populated by a multitude of immune cell types with varied phenotypic and functional properties, which can either promote or inhibit anti-tumor responses. Appropriate localization and function of these cells within tumors is critical for protective immunity, with CD8 T cell infiltration being a biomarker of disease outcome and therapeutic efficacy. Recent multiplexed imaging approaches have revealed highly complex patterns of localization for these immune cell subsets and the generation of distinct tumor microenvironments (TMEs), which can vary among cancer types, individuals, and within individual tumors. While it is recognized that TMEs play a pivotal role in disease progression, a better understanding of their composition, organization, and heterogeneity, as well as how distinct TMEs are reshaped with immunotherapy, is necessary. Here, we performed spatial analysis using multi-parameter confocal imaging, histocytometry, and CytoMAP to study the microanatomical organization of immune cells in two widely used preclinical cancer models, the MC38 colorectal and KPC pancreatic murine tumors engineered to express human carcinoembryonic antigen (CEA). Immune responses were examined in either unperturbed tumors or after immunotherapy with a CEA T cell bispecific (CEA-TCB) surrogate antibody and anti-PD-L1 treatment. CEA-TCB mono and combination immunotherapy markedly enhanced intra-tumoral cellularity of CD8 T cells, dominantly driven by the expansion of TCF1-PD1+ effector T cells and with more minor increases in TCF1+PD1+ resource CD8 T cells. The majority of infiltrating T cells, particularly resource CD8 T cells, were colocalized with dendritic cells (DCs) or activated MHCII+ macrophages, but largely avoided the deeper tumor nest regions composed of cancer cells and non-activated macrophages. These myeloid cell - T cell aggregates were found in close proximity to tumor blood vessels, generating perivascular immune niches. This perivascular TME was present in untreated samples and markedly increased after CEA-TCB therapy, with its relative abundance positively associated with response to therapy. Together, these studies demonstrate the utility of advanced spatial analysis in cancer research by revealing that blood vessels are key organizational hubs of innate and adaptive immune cells within tumors, and suggesting the likely relevance of the perivascular immune TME in disease outcome.


Asunto(s)
Neoplasias/inmunología , Microambiente Tumoral/inmunología , Animales , Anticuerpos Biespecíficos/uso terapéutico , Antineoplásicos Inmunológicos/uso terapéutico , Antígeno B7-H1/antagonistas & inhibidores , Antígeno Carcinoembrionario/genética , Antígeno Carcinoembrionario/inmunología , Línea Celular Tumoral , Células Dendríticas/inmunología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Macrófagos/inmunología , Masculino , Ratones Endogámicos BALB C , Ratones Transgénicos , Microscopía Confocal , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Linfocitos T/inmunología
4.
Clin Cancer Res ; 27(14): 4036-4053, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33771854

RESUMEN

PURPOSE: CD40 agonists hold great promise for cancer immunotherapy (CIT) as they enhance dendritic cell (DC) activation and concomitant tumor-specific T-cell priming. However, the broad expression of CD40 accounts for sink and side effects, hampering the efficacy of anti-CD40 antibodies. We hypothesized that these limitations can be overcome by selectively targeting CD40 agonism to the tumor. Therefore, we developed a bispecific FAP-CD40 antibody, which induces CD40 stimulation solely in presence of fibroblast activation protein α (FAP), a protease specifically expressed in the tumor stroma. EXPERIMENTAL DESIGN: FAP-CD40's in vitro activity and FAP specificity were validated by antigen-presenting cell (APC) activation and T-cell priming assays. In addition, FAP-CD40 was tested in subcutaneous MC38-FAP and KPC-4662-huCEA murine tumor models. RESULTS: FAP-CD40 triggered a potent, strictly FAP-dependent CD40 stimulation in vitro. In vivo, FAP-CD40 strongly enhanced T-cell inflammation and growth inhibition of KPC-4662-huCEA tumors. Unlike nontargeted CD40 agonists, FAP-CD40 mediated complete regression of MC38-FAP tumors, entailing long-term protection. A high dose of FAP-CD40 was indispensable for these effects. While nontargeted CD40 agonists induced substantial side effects, highly dosed FAP-CD40 was well tolerated. FAP-CD40 preferentially accumulated in the tumor, inducing predominantly intratumoral immune activation, whereas nontargeted CD40 agonists displayed strong systemic but limited intratumoral effects. CONCLUSIONS: FAP-CD40 abrogates the systemic toxicity associated with nontargeted CD40 agonists. This enables administration of high doses, essential for overcoming CD40 sink effects and inducing antitumor immunity. Consequently, FAP-targeted CD40 agonism represents a promising strategy to exploit the full potential of CD40 signaling for CIT.


Asunto(s)
Antineoplásicos Inmunológicos/administración & dosificación , Antígenos CD40/agonistas , Endopeptidasas/efectos de los fármacos , Inmunoterapia/métodos , Proteínas de la Membrana/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Animales , Ratones , Células Tumorales Cultivadas
5.
Microb Genom ; 6(12)2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33295863

RESUMEN

Environmental factors, such as cigarette smoking or lung infections, may influence chronic obstructive pulmonary disease (COPD) progression by modifying the respiratory tract microbiome. However, whether the disease itself induces or maintains dysbiosis remains undefined. In this longitudinal study, we investigated the oropharyngeal microbiota composition and disease progression of mice (in cages of 5-10 mice per cage) before, during and up to 3 months after chronic cigarette smoke exposure or exposure to room air for 6 months. Cigarette smoke exposure induced pulmonary emphysema measurable at the end of exposure for 6 months, as well as 3 months following smoke exposure cessation. Using both classical culture methods and 16S rRNA sequencing, we observed that cigarette smoke exposure altered the relative composition of the oropharyngeal microbiota and reduced its diversity (P <0.001). More than 60 taxa were substantially reduced after 6 months of smoke exposure (P <0.001) However, oropharyngeal microbiota disordering was reversed 3 months after smoke exposure cessation and no significant difference was observed compared to age-matched control mice. The effects of lung infection with Streptococcus pneumoniae on established smoke-induced emphysema and on the oropharyngeal microbiota were also evaluated. Inoculation with S. pneumoniae induced lung damage and altered the microbiota composition for a longer time compared to control groups infected but not previously exposed to smoke (P=0.01). Our data demonstrate effects of cigarette smoke and pneumococcus infection leading to altered microbiota and emphysema development. The reversal of the disordering of the microbiota composition, but not lung damage, following smoke exposure cessation and after clearance of infection suggest that changes in lung structure are not sufficient to sustain a disordered microbiota in mice. Whether changes in the airway microbiota contribute to inducing emphysema requires further investigation.


Asunto(s)
Bacterias/clasificación , Disbiosis/etiología , Orofaringe/microbiología , Infecciones Neumocócicas/microbiología , Enfisema Pulmonar/genética , ARN Ribosómico 16S/genética , Humo/efectos adversos , Animales , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/aislamiento & purificación , ADN Ribosómico/genética , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Disbiosis/inducido químicamente , Disbiosis/complicaciones , Disbiosis/microbiología , Femenino , Estudios Longitudinales , Ratones , Filogenia , Enfisema Pulmonar/inducido químicamente , Enfisema Pulmonar/microbiología , ARN Bacteriano/genética , Análisis de Secuencia de ADN/métodos , Productos de Tabaco/efectos adversos
6.
Parasit Vectors ; 9(1): 376, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27363703

RESUMEN

BACKGROUND: Treatment options for infections with soil-transmitted helminths (STH) - Ascaris lumbricoides, Trichuris trichiura and the two hookworm species, Ancylostoma duodenale and Necator americanus - are limited despite their considerable global health burden. The aim of the present study was to test the activity of an openly available FDA library against laboratory models of human intestinal nematode infections. METHODS: All 1,600 drugs were first screened against Ancylostoma ceylanicum third-stage larvae (L3). Active compounds were scrutinized and toxic compounds, drugs indicated solely for topical use, and already well-studied anthelmintics were excluded. The remaining hit compounds were tested in parallel against Trichuris muris first-stage larvae (L1), Heligmosomoides polygyrus third-stage larvae (L3), and adult stages of the three species in vitro. In vivo studies were performed in the H. polygyrus and T. muris mice models. RESULTS: Fifty-four of the 1,600 compounds tested revealed an activity of > 60 % against A. ceylanicum L3 (hit rate of 3.4 %), following incubation at 200 µM for 72 h. Twelve compounds progressed into further screens. Adult A. ceylanicum were the least affected (1/12 compounds active at 50 µM), while eight of the 12 test compounds revealed activity against T. muris L1 (100 µM) and adults (50 µM), and H. polygyrus L3 (200 µM). Trichlorfon was the only compound active against all stages of A. ceylanicum, H. polygyrus and T. muris. In addition, trichlorfon achieved high worm burden reductions of 80.1 and 98.9 %, following a single oral dose of 200 mg/kg in the T. muris and H. polygyrus mouse model, respectively. CONCLUSION: Drug screening on the larval stages of intestinal parasitic nematodes is feasible using small libraries and important given the empty drug discovery and development pipeline for STH infections. Differences and commonalities in drug activities across the different STH species and stages were confirmed. Hits identified might serve as a starting point for drug discovery for STH.


Asunto(s)
Antihelmínticos/farmacología , Parasitosis Intestinales/tratamiento farmacológico , Nematodos/efectos de los fármacos , Infecciones por Nematodos/tratamiento farmacológico , Bibliotecas de Moléculas Pequeñas/normas , Adulto , Ancylostoma/efectos de los fármacos , Animales , Antihelmínticos/uso terapéutico , Ascaris lumbricoides/efectos de los fármacos , Cricetinae , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Femenino , Humanos , Masculino , Mesocricetus , Ratones , Ratones Endogámicos C57BL , Necator americanus/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Trichuris/efectos de los fármacos , Estados Unidos , United States Food and Drug Administration
7.
Parasit Vectors ; 8: 371, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26174801

RESUMEN

BACKGROUND: Eggs of the porcine whipworm Trichuris suis are currently explored in human clinical trials as a treatment of immune-mediated diseases. In this context, only the infective, embryonated eggs, constitute the Active Pharmaceutical Ingredient (API). The rodent whipworm, Trichuris muris is commonly used as a laboratory model to study Trichuris biology. The embryonated eggs (containing a fully developed larva) are biologically active and will invade the large intestinal mucosa of the host. This study aims to assess the in vitro hatching of T. muris and T. suis eggs in various bacterial cultures as a measure for their biological activity. METHODS: Eggs of T. muris and T. suis were incubated with Escherichia coli strain (BL-21) at three concentrations in a slightly modified in vitro egg hatching assay previously developed for T. muris. Additionally, E. coli strains (M15, SG13009, PMC103, JM109, TUNER, DH5alpha, TOP10) and five Gram-positive bacteria (Enterococcus caccae, Streptococcus hyointestinalis, Lactobacillus amylovorus, L. murinus, and L. reuteri) were tested as a hatching stimulus for T. muris and T. suis eggs. RESULTS: Whereas T. muris eggs hatched, T. suis did not, even when exposed to different concentrations and strains of E. coli after 4 and 24-hour incubation. When incubated with Gram-positive bacteria, only T. muris eggs showed noticeable hatching after 20 h, although with high variability. CONCLUSIONS: The observed difference in hatching of T. muris and T. suis eggs incubated with selected bacteria, indicate significant biological differences which may reflect specific adaptation to different host-specific gut microbiota.


Asunto(s)
Escherichia coli/fisiología , Bacterias Grampositivas/fisiología , Óvulo/microbiología , Óvulo/fisiología , Trichuris/microbiología , Trichuris/fisiología , Animales , Especificidad de la Especie
8.
PLoS Negl Trop Dis ; 7(3): e2119, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23556013

RESUMEN

BACKGROUND: It is widely recognized that only a handful of drugs are available against soil-transmitted helminthiasis, all of which are characterized by a low efficacy against Trichuris trichiura, when administered as single doses. The re-evaluation of old, forgotten drugs is a promising strategy to identify alternative anthelminthic drug candidates or drug combinations. METHODOLOGY: We studied the activity of the veterinary drug oxantel pamoate against Trichuris muris, Ancylostoma ceylanicum and Necator americanus in vitro and in vivo. In addition, the dose-effect of oxantel pamoate combined with albendazole, mebendazole, levamisole, pyrantel pamoate and ivermectin was studied against T. muris in vitro and additive or synergistic combinations were followed up in vivo. PRINCIPAL FINDINGS: We calculated an ED50 of 4.7 mg/kg for oxantel pamoate against T. muris in mice. Combinations of oxantel pamoate with pyrantel pamoate behaved antagonistically in vitro (combination index (CI) = 2.53). Oxantel pamoate combined with levamisole, albendazole or ivermectin using ratios based on their ED50s revealed antagonistic effects in vivo (CI = 1.27, 1.90 and 1.27, respectively). A highly synergistic effect (CI = 0.15) was observed when oxantel pamoate-mebendazole was administered to T. muris-infected mice. Oxantel pamoate (10 mg/kg) lacked activity against Ancylostoma ceylanicum and Necator americanus in vivo. CONCLUSION/SIGNIFICANCE: Our study confirms the excellent trichuricidal properties of oxantel pamoate. Since the drug lacks activity against hookworms it is necessary to combine oxantel pamoate with a partner drug with anti-hookworm properties. Synergistic effects were observed for oxantel pamoate-mebendazole, hence this combination should be studied in more detail. Since, of the standard drugs, albendazole has the highest efficacy against hookworms, additional investigations on the combination effect of oxantel pamoate-albendazole should be launched.


Asunto(s)
Anquilostomiasis/tratamiento farmacológico , Antihelmínticos/administración & dosificación , Necatoriasis/tratamiento farmacológico , Pamoato de Pirantel/análogos & derivados , Tricuriasis/tratamiento farmacológico , Ancylostoma/efectos de los fármacos , Anquilostomiasis/parasitología , Animales , Antihelmínticos/farmacología , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Quimioterapia Combinada/métodos , Femenino , Ratones , Ratones Endogámicos C57BL , Necator americanus/efectos de los fármacos , Necatoriasis/parasitología , Pruebas de Sensibilidad Parasitaria , Pamoato de Pirantel/administración & dosificación , Pamoato de Pirantel/farmacología , Resultado del Tratamiento , Tricuriasis/parasitología , Trichuris/efectos de los fármacos
9.
Parasit Vectors ; 5: 292, 2012 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-23231753

RESUMEN

BACKGROUND: Soil-transmitted helminth (STH) infections are responsible for a huge public health burden, however treatment options are limited. The discovery and development of novel efficacious drugs or drug combinations for the treatment of STH infections therefore has a high research priority. METHODS: We studied drug combination effects using the main standard anthelmintics, albendazole, mebendazole, levamisole, pyrantel pamoate and ivermectin in the Trichuris muris model. Drug combinations were first tested in vitro and additive and synergistic combinations investigated further in vivo in female mice using ratios based on the ED50 of the respective drugs. RESULTS: In vitro all 10 combinations of the standard anthelmintics tested against T. muris revealed synergistic behavior. We identified three drug combinations in vivo as strongly synergistic, namely mebendazole-ivermectin (Combination index (CI)=0.16), mebendazole-levamisole (CI=0.17) and albendazole-mebendazole (CI=0.23). For albendazole-ivermectin, moderate synergism was observed (CI=0.81) and for albendazole-levamisole a nearly additive effect was documented (CI=0.93) in vivo. Five combinations (albendazole-pyrantel pamoate, mebendazole-pyrantel pamoate, levamisole-pyrantel pamoate, levamisole-ivermectin and pyrantel pamoate-ivermectin) were antagonistic in vivo. CONCLUSION: Our results strengthen the evidence that combination chemotherapy might play a role in the treatment of Trichuris infections. Albendazole-mebendazole should be studied in greater detail in preclinical studies.


Asunto(s)
Antihelmínticos/administración & dosificación , Antihelmínticos/uso terapéutico , Tricuriasis/tratamiento farmacológico , Trichuris/efectos de los fármacos , Animales , Interacciones Farmacológicas , Quimioterapia Combinada , Heces/parasitología , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Tricuriasis/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA