Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cell ; 141(2): 315-30, 2010 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-20403326

RESUMEN

RIG-I detects invading viral RNA and activates the transcription factors NF-kappaB and IRF3 through the mitochondrial protein MAVS. Here we show that RNA bearing 5'-triphosphate strongly activates the RIG-I-IRF3 signaling cascade in a reconstituted system composed of RIG-I, mitochondria, and cytosol. Activation of RIG-I requires not only RNA but also polyubiquitin chains linked through lysine 63 (K63) of ubiquitin. RIG-I binds specifically to K63-polyubiquitin chains through its tandem CARD domains in a manner that depends on RNA and ATP. Mutations in the CARD domains that abrogate ubiquitin binding also impair RIG-I activation. Remarkably, unanchored K63-ubiquitin chains, which are not conjugated to any target protein, potently activate RIG-I. These ubiquitin chains function as an endogenous ligand of RIG-I in human cells. Our results delineate the mechanism of RIG-I activation, identify CARD domains as a ubiquitin sensor, and demonstrate that unanchored K63-polyubiquitin chains are signaling molecules in antiviral innate immunity.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Inmunidad Innata , ARN Viral/inmunología , Transducción de Señal , Enzimas Ubiquitina-Conjugadoras/metabolismo , Adenosina Trifosfato/metabolismo , Línea Celular , Proteína 58 DEAD Box , ARN Helicasas DEAD-box/inmunología , Humanos , Quinasa I-kappa B/metabolismo , Factor 3 Regulador del Interferón/inmunología , Factor 3 Regulador del Interferón/metabolismo , Polifosfatos/metabolismo , Poliubiquitina/metabolismo , ARN Bicatenario/inmunología , Receptores Inmunológicos , Factores de Transcripción/metabolismo , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas/metabolismo
2.
Nature ; 461(7260): 114-9, 2009 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-19675569

RESUMEN

TRAF6 is a ubiquitin ligase that is essential for the activation of NF-kappaB and MAP kinases in several signalling pathways, including those emanating from the interleukin 1 and Toll-like receptors. TRAF6 functions together with a ubiquitin-conjugating enzyme complex consisting of UBC13 (also known as UBE2N) and UEV1A (UBE2V1) to catalyse Lys 63-linked polyubiquitination, which activates the TAK1 (also known as MAP3K7) kinase complex. TAK1 in turn phosphorylates and activates IkappaB kinase (IKK), leading to the activation of NF-kappaB. Although several proteins are known to be polyubiquitinated in the IL1R and Toll-like receptor pathways, it is not clear whether ubiquitination of any of these proteins is important for TAK1 or IKK activation. By reconstituting TAK1 activation in vitro using purified proteins, here we show that free Lys 63 polyubiquitin chains, which are not conjugated to any target protein, directly activate TAK1 by binding to the ubiquitin receptor TAB2 (also known as MAP3K7IP2). This binding leads to autophosphorylation and activation of TAK1. Furthermore, we found that unanchored polyubiquitin chains synthesized by TRAF6 and UBCH5C (also known as UBE2D3) activate the IKK complex. Disassembly of the polyubiquitin chains by deubiquitination enzymes prevented TAK1 and IKK activation. These results indicate that unanchored polyubiquitin chains directly activate TAK1 and IKK, suggesting a new mechanism of protein kinase regulation.


Asunto(s)
Quinasa I-kappa B/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Poliubiquitina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Línea Celular , Proteína 58 DEAD Box , ARN Helicasas DEAD-box/metabolismo , Enzima Desubiquitinante CYLD , Activación Enzimática/efectos de los fármacos , Células HeLa , Humanos , Interleucina-1beta/farmacología , Lisina/metabolismo , Fosforilación , Poliubiquitina/biosíntesis , Receptores Inmunológicos , Factor 6 Asociado a Receptor de TNF/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Enzimas Ubiquitina-Conjugadoras , Ubiquitinación
3.
PLoS One ; 8(7): e66879, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23861750

RESUMEN

Surface Plasmon Resonance (SPR) is rarely used as a primary High-throughput Screening (HTS) tool in fragment-based approaches. With SPR instruments becoming increasingly high-throughput it is now possible to use SPR as a primary tool for fragment finding. SPR becomes, therefore, a valuable tool in the screening of difficult targets such as the ubiquitin E3 ligase Parkin. As a prerequisite for the screen, a large number of SPR tests were performed to characterize and validate the active form of Parkin. A set of compounds was designed and used to define optimal SPR assay conditions for this fragment screen. Using these conditions, more than 5000 pre-selected fragments from our in-house library were screened for binding to Parkin. Additionally, all fragments were simultaneously screened for binding to two off target proteins to exclude promiscuous binding compounds. A low hit rate was observed that is in line with hit rates usually obtained by other HTS screening assays. All hits were further tested in dose responses on the target protein by SPR for confirmation before channeling the hits into Nuclear Magnetic Resonance (NMR) and other hit-confirmation assays.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Fragmentos de Péptidos/química , Resonancia por Plasmón de Superficie , Ubiquitina-Proteína Ligasas/química , Ditiotreitol/química , Ditiotreitol/metabolismo , Descubrimiento de Drogas , Ensayos Analíticos de Alto Rendimiento/métodos , Cinética , Ligandos , Resonancia Magnética Nuclear Biomolecular , Fragmentos de Péptidos/metabolismo , Unión Proteica , Sustancias Reductoras/química , Sustancias Reductoras/metabolismo , Resonancia por Plasmón de Superficie/métodos , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/metabolismo
4.
Dev Cell ; 16(4): 485-6, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19386255

RESUMEN

Polyubiquitin chains linked through different lysines of ubiquitin may exert both proteasome-dependent and -independent functions. In a recent Cell issue, Xu et al. employ quantitative proteomics to profile polyubiquitin linkages in yeast. They find that linkages through all lysines of ubiquitin, except lysine-63, can target proteasomal degradation in vivo, and that lysine-11 polyubiquitination is important for endoplasmic reticulum-associated degradation (ERAD).


Asunto(s)
Poliubiquitina/metabolismo , Lisina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/metabolismo , Ubiquitinación
5.
J Biol Chem ; 283(34): 23150-60, 2008 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-18541531

RESUMEN

Microtubule pulling forces that govern mitotic spindle movement of chromosomes are tightly regulated by G-proteins. A host of proteins, including Galpha subunits, Ric-8, AGS3, regulators of G-protein signalings, and scaffolding proteins, coordinate this vital cellular process. Ric-8A, acting as a guanine nucleotide exchange factor, catalyzes the release of GDP from various Galpha.GDP subunits and forms a stable nucleotide-free Ric-8A:Galpha complex. AGS3, a guanine nucleotide dissociation inhibitor (GDI), binds and stabilizes Galpha subunits in their GDP-bound state. Because Ric-8A and AGS3 may recognize and compete for Galpha.GDP in this pathway, we probed the interactions of a truncated AGS3 (AGS3-C; containing only the residues responsible for GDI activity), with Ric-8A:Galpha(il) and that of Ric-8A with the AGS3-C:Galpha(il).GDP complex. Pulldown assays, gel filtration, isothermal titration calorimetry, and rapid mixing stopped-flow fluorescence spectroscopy indicate that Ric-8A catalyzes the rapid release of GDP from AGS3-C:Galpha(i1).GDP. Thus, Ric-8A forms a transient ternary complex with AGS3-C:Galpha(i1).GDP. Subsequent dissociation of AGS3-C and GDP from Galpha(i1) yields a stable nucleotide free Ric-8A.Galpha(i1) complex that, in the presence of GTP, dissociates to yield Ric-8A and Galpha(i1).GTP. AGS3-C does not induce dissociation of the Ric-8A.Galpha(i1) complex, even when present at very high concentrations. The action of Ric-8A on AGS3:Galpha(i1).GDP ensures unidirectional activation of Galpha subunits that cannot be reversed by AGS3.


Asunto(s)
Proteínas Portadoras/química , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Factores de Intercambio de Guanina Nucleótido/fisiología , Péptidos y Proteínas de Señalización Intracelular/fisiología , Proteínas Nucleares/fisiología , Animales , Unión Competitiva , Calorimetría/métodos , Catálisis , Guanina/química , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Guanosina Difosfato/química , Cinética , Proteínas Nucleares/genética , Sistemas de Lectura Abierta , Ratas , Espectrometría de Fluorescencia/métodos , Factores de Tiempo
6.
J Biol Chem ; 280(37): 32057-60, 2005 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-16051611

RESUMEN

Recently, in vitro selection using mRNA display was used to identify a novel peptide sequence that binds with high affinity to Galpha(i1). The peptide was minimized to a 9-residue sequence (R6A-1) that retains high affinity and specificity for the GDP-bound state of Galpha(i1) and acts as a guanine nucleotide dissociation inhibitor (GDI). Here we demonstrate that the R6A-1 peptide interacts with Galpha subunits representing all four G protein classes, acting as a core motif for Galpha interaction. This contrasts with the consensus G protein regulatory(GPR) sequence, a 28-mer peptide GDI derived from the GoLoco (Galpha(i/0)-Loco interaction)/GPR motif that shares no homology with R6A-1 and binds only to Galpha(i1-3) in this assay. Binding of R6A-1 is generally specific to the GDP-bound state of the Galpha subunits and excludes association with Gbetagamma. R6A-Galpha(i1) complexes are resistant to trypsin digestion and exhibit distinct stability in the presence of Mg(2+), suggesting that the R6A and GPR peptides exert their activities using different mechanisms. Studies using Galpha(i1)/Galpha(s) chimeras identify two regions of Galpha(i1) (residues 1-35 and 57-88) as determinants for strong R6A-G(ialpha1) interaction. Residues flanking the R6A-1 peptide confer unique binding properties, indicating that the core motif could be used as a starting point for the development of peptides exhibiting novel activities and/or specificity for particular G protein subclasses or nucleotide-bound states.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP/química , Péptidos/química , Secuencias de Aminoácidos , Clonación Molecular , ADN Complementario/metabolismo , Dimerización , Relación Dosis-Respuesta a Droga , Vectores Genéticos , Guanosina Difosfato/química , Guanosina Trifosfato/química , Humanos , Hidrólisis , Inmunoprecipitación , Sustancias Macromoleculares/química , Magnesio/química , Modelos Genéticos , Unión Proteica , Biosíntesis de Proteínas , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Factores de Tiempo , Tripsina/farmacología
7.
J Biol Chem ; 278(51): 51825-32, 2003 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-14530282

RESUMEN

Activator of G protein signaling 3 (AGS3) is a guanine nucleotide dissociation inhibitor (GDI) that contains four G protein regulatory (GPR) or GoLoco motifs in its C-terminal domain. The entire C-terminal domain (AGS3-C) as well as certain peptides corresponding to individual GPR motifs of AGS3 bound to G alpha i1 and inhibited the binding of GTP by stabilizing the GDP-bound conformation of G alpha i1. The stoichiometry, free energy, enthalpy, and dissociation constant for binding of AGS3-C to G alpha i1 were determined using isothermal titration calorimetry. AGS3-C possesses two apparent high affinity (Kd approximately 20 nm) and two apparent low affinity (Kd approximately 300 nm) binding sites for G alpha i1. Upon deletion of the C-terminal GPR motif from AGS3-C, the remaining sites were approximately equivalent with respect to their affinity (Kd approximately 400 nm) for G alpha i1. Peptides corresponding to each of the four GPR motifs of AGS3 (referred to as GPR1, GPR2, GPR3, and GPR4, respectively, going from N to C terminus) bound to G alpha i1 with Kd values in the range of 1-8 microm. Although GPR1, GPR2, and GPR4 inhibited the binding of the fluorescent GTP analog BODIPY-FL-guanosine 5'-3-O-(thio)triphosphate to G alpha i1, GPR3 did not. However, addition of N- and C-terminal flanking residues to the GPR3 GoLoco core increased its affinity for G alpha i1 and conferred GDI activity similar to that of AGS3-C itself. Similar increases were observed for extended GPR2 and extended GPR1 peptides. Thus, while the tertiary structure of AGS3 may affect the affinity and activity of the GPR motifs contained within its sequence, residues outside of the GPR motifs strongly potentiate their binding and GDI activity toward G alpha i1 even though the amino acid sequences of these residues are not conserved among the GPR repeats.


Asunto(s)
Proteínas Portadoras/química , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Fragmentos de Péptidos/farmacología , Termodinámica , Secuencias de Aminoácidos , Animales , Sitios de Unión , Calorimetría , Proteínas Portadoras/metabolismo , Clonación Molecular , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Unión Proteica/efectos de los fármacos , Ratas , Eliminación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA