Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Plant Cell ; 36(9): 3584-3610, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38842420

RESUMEN

Organic carbon fixed in chloroplasts through the Calvin-Benson-Bassham Cycle can be diverted toward different metabolic fates, including cytoplasmic and mitochondrial respiration, gluconeogenesis, and synthesis of diverse plastid metabolites via the pyruvate hub. In plants, pyruvate is principally produced via cytoplasmic glycolysis, although a plastid-targeted lower glycolytic pathway is known to exist in non-photosynthetic tissue. Here, we characterized a lower plastid glycolysis-gluconeogenesis pathway enabling the direct interconversion of glyceraldehyde-3-phosphate and phospho-enol-pyruvate in diatoms, ecologically important marine algae distantly related to plants. We show that two reversible enzymes required to complete diatom plastid glycolysis-gluconeogenesis, Enolase and bis-phosphoglycerate mutase (PGAM), originated through duplications of mitochondria-targeted respiratory isoforms. Through CRISPR-Cas9 mutagenesis, integrative 'omic analyses, and measured kinetics of expressed enzymes in the diatom Phaeodactylum tricornutum, we present evidence that this pathway diverts plastid glyceraldehyde-3-phosphate into the pyruvate hub, and may also function in the gluconeogenic direction. Considering experimental data, we show that this pathway has different roles dependent in particular on day length and environmental temperature, and show that the cpEnolase and cpPGAM genes are expressed at elevated levels in high-latitude oceans where diatoms are abundant. Our data provide evolutionary, meta-genomic, and functional insights into a poorly understood yet evolutionarily recurrent plastid metabolic pathway.


Asunto(s)
Diatomeas , Gluconeogénesis , Glucólisis , Plastidios , Diatomeas/metabolismo , Diatomeas/genética , Plastidios/metabolismo , Plastidios/genética , Glucólisis/genética , Gluconeogénesis/genética , Filogenia
2.
J Virol ; : e0111324, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39213164

RESUMEN

Bacteria exposed to bactericidal treatment, such as antibiotics or bacteriophages (phages), often develop resistance. While phage therapy is proposed as a solution to the antibiotic resistance crisis, the bacterial resistance emerging during phage therapy remains poorly characterized. In this study, we examined a large population of phage-resistant extra-intestinal pathogenic Escherichia coli 536 clones that emerged from both in vitro (non-limited liquid medium) and in vivo (murine pneumonia) conditions. Genome sequencing uncovered a convergent mutational pattern in phage resistance mechanisms under both conditions, particularly targeting two cell-wall components, the K15 capsule and the lipopolysaccharide (LPS). This suggests that their identification in vivo could be predicted from in vitro assays. Phage-resistant clones exhibited a wide range of fitness according to in vitro tests, growth rate, and resistance to amoeba grazing, which could not distinguish between the K15 capsule and LPS mutants. In contrast, K15 capsule mutants retained virulence comparable to the wild-type strain, whereas LPS mutants showed significant attenuation in the murine pneumonia model. Additionally, we observed that resistance to the therapeutic phage through a nonspecific mechanism, such as capsule overproduction, did not systematically lead to co-resistance to other phages that were initially capable or incapable of infecting the wild-type strain. Our findings highlight the importance of incorporating a diverse range of phages in the design of therapeutic cocktails to target potential future phage-resistant clones effectively. IMPORTANCE: This study isolated more than 50 phage-resistant mutants from both in vitro and in vivo conditions, exposing an extra-intestinal pathogenic Escherichia coli strain to a single virulent phage. The characterization of these clones revealed several key findings: (1) mutations occurring during phage treatment affect the same pathways as those identified in vitro; (2) the resistance mechanisms are associated with the modification of two cell-wall components, with one involving receptor deletion (phage-specific mechanism) and the other, less frequent, involving receptor masking (phage-nonspecific mechanism); (3) an in vivo virulence assay demonstrated that the absence of the receptor abolishes virulence while masking the receptor preserves it; and (4) clones with a resistance mechanism nonspecific to a particular phage can remain susceptible to other phages. This supports the idea of incorporating diverse phages into therapeutic cocktails designed to collectively target both wild-type and phage-resistant strains, including those with resistance mechanisms nonspecific to a phage.

3.
BMC Microbiol ; 19(1): 17, 2019 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-30654756

RESUMEN

BACKGROUND: To describe the temporal dynamics, molecular characterization, clinical and ex vivo virulence of emerging O1:K1 neonatal meningitis Escherichia coli (NMEC) strains of Sequence Type complex (STc) 95 in France. The national reference center collected NMEC strains and performed whole genome sequencing (WGS) of O1:K1 STc95 NMEC strains for phylogenetic and virulence genes content analysis. Data on the clinical and biological features of patients were also collected. Ex vivo virulence was assessed using the Dictyostelium discoideum amoeba model. RESULTS: Among 250 NMEC strains collected between 1998 and 2015, 38 belonged to O1:K1 STc95. This clonal complex was the most frequently collected after 2004, representing up to 25% of NMEC strains in France. Phylogenetic analysis demonstrated that most (74%) belonged to a cluster designated D-1, characterized by the adhesin FimH30. There is no clinical data to suggest that this cluster is more pathogenic than its counterparts, although it is highly predominant and harbors a large repertoire of extraintestinal virulence factors, including a pS88-like plasmid. Ex vivo virulence model showed that this cluster was generally less virulent than STc95 reference strains of O45S88:H7 and O18:H7 serotypes. However, the model showed differences between several subclones, although they harbor the same known virulence determinants. CONCLUSIONS: The emerging clonal group O1:K1 STc95 of NMEC strains is mainly composed of a cluster with many virulence factors but of only moderate virulence. Whether its emergence is due to its ability to colonize the gut thanks to FimH30 or pS88-like plasmid remains to be determined.


Asunto(s)
Escherichia coli/genética , Genoma Bacteriano/genética , Enfermedades del Recién Nacido/microbiología , Meningitis por Escherichia coli/microbiología , Secuenciación Completa del Genoma , Escherichia coli/clasificación , Escherichia coli/patogenicidad , Francia , Humanos , Recién Nacido , Modelos Genéticos , Filogenia , Virulencia/genética
4.
Int J Med Microbiol ; 307(1): 44-56, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27923724

RESUMEN

In order to clarify the role of the high-pathogenicity island (HPI) in the experimental virulence of Escherichia coli, we constructed different deletion mutants of the entire HPI and of three individual genes (irp2, fyuA and ybtA), encoding for three main functions within the HPI. Those mutants were constructed for three phylogroup B2 strains (536-STc127, CFT073-STc73, and NU14-STc95), representative of the main B2 subgroups causing extra-intestinal infections. Transcriptional profiles obtained for the selected HPI genes irp2, fyuA and ybtA revealed similar patterns for all strains, both under selective iron-deplete conditions and in intracellular bacterial communities in vitro, with a high expression of irp2. Deletion of irp2 and ybtA abrogated yersiniabactin production, whereas the fyuA knockout was only slightly impaired for siderophore synthesis. The experimental virulence of the strains was then tested in amoeba Dictyostelium discoideum and mouse septicaemia models. No effect of any HPI mutant was observed for the two more virulent strains 536 and CFT073. In contrast, the virulence of the less virulent NU14 strain was dramatically diminished by the complete deletion of the HPI and irp2 gene whereas a lesser reduction in virulence was observed for the fyuA and ybtA deletion mutants. The two experimental virulence models gave similar results. It appears that the role of the HPI in experimental virulence is depending on the genetic background of the strains despite similar inter-strain transcriptional patterns of HPI genes, as well as of the functional class of the studied gene. Altogether, these data indicate that the intrinsic extra-intestinal virulence in the E. coli species is multigenic, with epistatic interactions between the genes.


Asunto(s)
Escherichia coli/crecimiento & desarrollo , Escherichia coli/genética , Islas Genómicas , Animales , Supervivencia Celular , Dictyostelium/microbiología , Dictyostelium/fisiología , Modelos Animales de Enfermedad , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/patología , Femenino , Eliminación de Gen , Perfilación de la Expresión Génica , Ratones , Sepsis/epidemiología , Sepsis/patología , Virulencia
5.
iScience ; 26(6): 106783, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37235054

RESUMEN

In Dictyostelium chimeras, "cheaters" are strains that positively bias their contribution to the pool of spores, i.e., the reproductive cells resulting from development. On evolutionary time scales, the selective advantage; thus, gained by cheaters is predicted to undermine collective functions whenever social behaviors are genetically determined. Genotypes; however, are not the sole determinant of spore bias, but the relative role of genetic and plastic differences in evolutionary success is unclear. Here, we study chimeras composed of cells harvested in different phases of population growth. We show that such heterogeneity induces frequency-dependent, plastic variation in spore bias. In genetic chimeras, the magnitude of such variation is not negligible and can even reverse the classification of a strain's social behavior. Our results suggest that differential cell mechanical properties can underpin, through biases emerging during aggregation, a "lottery" in strains' reproductive success that may counter the evolution of cheating.

6.
iScience ; 25(9): 105006, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36105585

RESUMEN

The social amoeba Dictyostelium discoideum commonly forms chimeric fruiting bodies. Genetic variants that produce a higher proportion of spores are predicted to undercut multicellular organization unless cooperators assort positively. Cell adhesion is considered a primary factor driving such assortment, but evolution of adhesion has not been experimentally connected to changes in social performance. We modified by experimental evolution the efficiency of individual cells in attaching to a surface. Surprisingly, evolution appears to have produced social cooperators irrespective of whether stronger or weaker adhesion was selected. Quantification of reproductive success, cell-cell adhesion, and developmental patterns, however, revealed two distinct social behaviors, as captured when the classical metric for social success is generalized by considering clonal spore production. Our work shows that cell mechanical interactions can constrain the evolution of development and sociality in chimeras and that elucidation of proximate mechanisms is necessary to understand the ultimate emergence of multicellular organization.

7.
PLoS One ; 5(8): e11882, 2010 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-20711443

RESUMEN

To many pathogenic bacteria, human hosts are an evolutionary dead end. This begs the question what evolutionary forces have shaped their virulence traits. Why are these bacteria so virulent? The coincidental evolution hypothesis suggests that such virulence factors result from adaptation to other ecological niches. In particular, virulence traits in bacteria might result from selective pressure exerted by protozoan predator. Thus, grazing resistance may be an evolutionarily exaptation for bacterial pathogenicity. This hypothesis was tested by subjecting a well characterized collection of 31 Escherichia coli strains (human commensal or extra-intestinal pathogenic) to grazing by the social haploid amoeba Dictyostelium discoideum. We then assessed how resistance to grazing correlates with some bacterial traits, such as the presence of virulence genes. Whatever the relative population size (bacteria/amoeba) for a non-pathogenic bacteria strain, D. discoideum was able to phagocytise, digest and grow. In contrast, a pathogenic bacterium strain killed D. discoideum above a certain bacteria/amoeba population size. A plating assay was then carried out using the E. coli collection faced to the grazing of D. discoideum. E. coli strains carrying virulence genes such as iroN, irp2, fyuA involved in iron uptake, belonging to the B2 phylogenetic group and being virulent in a mouse model of septicaemia were resistant to the grazing from D. discoideum. Experimental proof of the key role of the irp gene in the grazing resistance was evidenced with a mutant strain lacking this gene. Such determinant of virulence may well be originally selected and (or) further maintained for their role in natural habitat: resistance to digestion by free-living protozoa, rather than for virulence per se.


Asunto(s)
Dictyostelium/microbiología , Escherichia coli/genética , Escherichia coli/patogenicidad , Evolución Molecular , Factores de Virulencia/genética , Animales , Dictyostelium/crecimiento & desarrollo , Ecología , Escherichia coli/metabolismo , Escherichia coli/fisiología , Genes Bacterianos/genética , Islas Genómicas/genética , Humanos , Ratones , Mutación , Factores de Virulencia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA