Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Molecules ; 28(4)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36838907

RESUMEN

Cardiovascular diseases (CVD), such as myocardial infarction (MI), constitute one of the world's leading causes of annual deaths. This cardiomyopathy generates a tissue scar with poor anatomical properties and cell necrosis that can lead to heart failure. Necrotic tissue repair is required through pharmaceutical or surgical treatments to avoid such loss, which has associated adverse collateral effects. However, to recover the infarcted myocardial tissue, biopolymer-based scaffolds are used as safer alternative treatments with fewer side effects due to their biocompatibility, chemical adaptability and biodegradability. For this reason, a systematic review of the literature from the last five years on the production and application of chitosan scaffolds for the reconstructive engineering of myocardial tissue was carried out. Seventy-five records were included for review using the "preferred reporting items for systematic reviews and meta-analyses" data collection strategy. It was observed that the chitosan scaffolds have a remarkable capacity for restoring the essential functions of the heart through the mimicry of its physiological environment and with a controlled porosity that allows for the exchange of nutrients, the improvement of the electrical conductivity and the stimulation of cell differentiation of the stem cells. In addition, the chitosan scaffolds can significantly improve angiogenesis in the infarcted tissue by stimulating the production of the glycoprotein receptors of the vascular endothelial growth factor (VEGF) family. Therefore, the possible mechanisms of action of the chitosan scaffolds on cardiomyocytes and stem cells were analyzed. For all the advantages observed, it is considered that the treatment of MI with the chitosan scaffolds is promising, showing multiple advantages within the regenerative therapies of CVD.


Asunto(s)
Quitosano , Infarto del Miocardio , Humanos , Quitosano/química , Andamios del Tejido/química , Factor A de Crecimiento Endotelial Vascular , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Ingeniería de Tejidos
2.
Langmuir ; 38(25): 7740-7749, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35687828

RESUMEN

Parahydrophobic surfaces (PHSs) composed of arrays of cubic µ-pillars with a double scale of roughness and variable wettability were systematically obtained in one step and a widely accessible stereolithographic Formlabs 3D printer. The wettability control was achieved by combining the geometrical parameters (H = height and P = pitch) and the surface modification with fluoroalkyl silane compounds. Homogeneous distribution of F and Si atoms onto the pillars was observed by XPS and SEM-EDAX. A nano-roughness on the heads of the pillars was achieved without any post-treatment. The smallest P values lead to surfaces with static contact angles (CAs) >150° regardless of the H utilized. Interestingly, the relationship 0.6 ≤ H/P ≤ 2.6 obtained here was in good agreement with the H/P values reported for nano- and submicron pillars. Furthermore, experimental CAs, advancing and receding CAs, were consistent with the theoretical prediction from the Cassie-Baxter model. Structures covered with perfluorodecyltriethoxysilane with high H and short P lead to PHSs. Conversely, structures covered with perfluorodecyltrimethoxysilane exhibited a superhydrophobic behavior. Finally, several aqueous reactions, such as precipitation, coordination complex, and nanoparticle synthesis, were carried out by placing the reactive agents as microdroplets on the parahydrophobic pillars, demonstrating the potential application as chemical multi-reaction array platforms for a large variety of relevant fields in microdroplet manipulation, microfluidics systems, and health monitoring, among others.

3.
Langmuir ; 38(32): 9751-9759, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35921602

RESUMEN

Interfacial properties of polymeric materials are significantly influenced by their architectural structures and spatial features, while such a study of topologically interesting macromolecules is rarely reported. In this work, we reported, for the first time, the interfacial behavior of catenated poly(l-lactide) (C-PLA) at the air-water interface and compared it with its linear analogue (L-PLA). The isotherms of surface pressure-area per repeating unit showed significant interfacial behavioral differences between the two polymers with different topologies. Isobaric creep experiments and compression-expansion cycles also showed that C-PLA demonstrated higher stability at the air-water interface. Interestingly, when the films at different surface pressures were transferred via the Langmuir-Blodgett method, successive atomic force microscopy imaging displayed distinct nanomorphologies, in which the surface of C-PLA exhibited nanofibrous structures, while that of the L-PLA revealed a smoother topology with less fiber-like structures.


Asunto(s)
Aire , Agua , Microscopía de Fuerza Atómica , Poliésteres/química , Polímeros/química , Propiedades de Superficie , Agua/química
4.
Anal Bioanal Chem ; 414(3): 1347-1357, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34750643

RESUMEN

A straightforward in situ detection method for dengue infection was demonstrated through the molecular imprinting of a dengue nonstructural protein 1 (NS1) epitope into an electropolymerized molecularly imprinted polyterthiophene (E-MIP) film sensor. The key enabling step in the sensor fabrication is based on an epitope imprinting strategy, in which short peptide sequences derived from the original target molecules were employed as the main template for detection and analysis. The formation of the E-MIP sensor films was facilitated using cyclic voltammetry (CV) and monitored in situ by electrochemical quartz crystal microbalance (EC-QCM). Surface properties were analyzed using different techniques including atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and polarization modulation-infrared reflection-adsorption (PM-IRRAS). The standard calibration curve (R = 0.9830) was generated for the detection of the epitope, Ac-VHTWTEQYKFQ-NH2, with a linear range of 0.2 to 30 µg/mL and detection limit of 0.073 µg/mL. A separate calibration curve (R = 0.9786) was obtained using spiked buffered solutions of dengue NS1 protein, which resulted in a linear range of 0.2 to 10 µg/mL and a detection limit of 0.056 µg/mL. The fabricated E-MIP sensor exhibited long-term stability, high sensitivity, and good selectivity towards the targeted molecules. These results indicated that the formation of the exact and stable cavity imprints in terms of size, shape, and functionalities was successful. In our future work, we aim to use our E-MIP sensors for NS1 detection in real-life samples such as serum and blood.


Asunto(s)
Virus del Dengue/aislamiento & purificación , Dengue/diagnóstico , Polímeros Impresos Molecularmente/química , Proteínas no Estructurales Virales/análisis , Adsorción , Técnicas Electroquímicas , Humanos , Límite de Detección , Impresión Molecular , Espectroscopía de Fotoelectrones , Tecnicas de Microbalanza del Cristal de Cuarzo , Proteínas no Estructurales Virales/aislamiento & purificación
5.
Soft Matter ; 17(32): 7524-7531, 2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34318867

RESUMEN

In nature, superhydrophobic surfaces (SHSs) exhibit microstructures with several roughness scales. Scalable fabrication and build-up along the X-Y plane represent the promise of 3D printing technology. Herein we report 3D printed microstructures with a dual roughness scale that achieves SHS using a readily available Formlabs stereolithography (SLA) printer. Pillar-like structure (PLS) arrangements with a wide range of geometrical shapes were 3D printed at three resolutions and two printing orientations. We discovered that a tilted printing direction enables a stair-case pattern on the µ-PLS surfaces, conferring them a µ-roughness that reduces the solid-liquid contact area. The programmed resolution governs the number of polymerized layers that give rise to the stepped pattern on the µ-PLS surfaces. However, this is reduced as the printing resolution increases. Also, all samples' experimental contact angles were consistent with theoretical predictions from Cassie-Baxter, Wenzel, and Nagayama wettability models. The underlying mechanisms and governing parameters were also discussed. It is believed that this work will enable scalable and high throughput roughness design in augmenting future 3D printing object applications.

6.
Macromol Rapid Commun ; 41(21): e2000195, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32529701

RESUMEN

The present paper describes the addition of nitroxide-functionalized graphene oxide (GOFT) into polyamide 6 (PA6) micro- and nanofibers, which are obtained through electrospinning. Scanning electron microscopy micrographs demonstrate the presence of fibers. Tensile testing presents an unexpected and non-obvious behavior, in which the Young's modulus, tensile strength, and elongation simultaneously and remarkably increase compared to the pristine polymer nanofibers. GOFT induces the hydrogen bonding between the NH group from PA6 with the functional groups, thus promoting higher crystallinity of the polymer matrix. Nonetheless, deconvoluted curves by differential scanning calorimetry reveal the presence of two quasi-steady polymorphs (ß and Î´ phases) contributing to 46% of the total crystallinity. This evidence suggests that their presence and high ratios are responsible for the unexpected and simultaneous enhancement of tensile properties.


Asunto(s)
Nanofibras , Nylons , Caprolactama/análogos & derivados , Grafito , Polímeros
7.
Small ; 14(22): e1800115, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29700977

RESUMEN

Poly(ε-caprolactone) (PCL)-based nanomaterials, such as nanoparticles and liposomes, have exhibited great potential as controlled release systems, but the difficulties in large-scale fabrication limit their practical applications. Among the various methods being developed to fabricate polymer nanosheets (PNSs) for different applications, such as Langmuir-Blodgett technique and layer-by-layer assembly, are very effort consuming, and only a few PNSs can be obtained. In this paper, poly(ε-caprolactone)-based PNSs with adjustable thickness are obtained in large quantity by simple water exposure of multilayer polymer films, which are fabricated via a layer multiplying coextrusion method. The PNS is also demonstrated as a novel controlled guest release system, in which release kinetics are adjustable by the nanosheet thickness, pH values of the media, and the presence of protecting layers. Theoretical simulations, including Korsmeyer-Peppas model and Finite-element analysis, are also employed to discern the observed guest-release mechanisms.

9.
Bioconjug Chem ; 27(5): 1227-35, 2016 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-27077475

RESUMEN

Photodynamic therapy (PDT) is a promising avenue for greater treatment efficacy of highly resistant and aggressive melanoma. Through photosensitizer attachment to nanoparticles, specificity of delivery can be conferred to further reduce potential side effects. While the main focus of PDT is the destruction of cancer cells, additional targeting of tumor-associated macrophages also present in the tumor microenvironment could further enhance treatment by eliminating their role in processes such as invasion, metastasis, and immunosuppression. In this study, we investigated PDT of macrophages and tumor cells through delivery using the natural noninfectious nanoparticle cowpea mosaic virus (CPMV), which has been shown to have specificity for the immunosuppressive subpopulation of macrophages and also targets cancer cells. We further explored conjugation of CPMV/dendron hybrids in order to improve the drug loading capacity of the nanocarrier. Overall, we demonstrated effective elimination of both macrophage and tumor cells at low micromolar concentrations of the photosensitizer when delivered with the CPMV bioconjugate, thereby potentially improving melanoma treatment.


Asunto(s)
Comovirus/química , Dendrímeros/química , Macrófagos/metabolismo , Melanoma Experimental/patología , Nanopartículas/química , Fotoquimioterapia , Fármacos Fotosensibilizantes/metabolismo , Animales , Portadores de Fármacos/química , Ratones , Fármacos Fotosensibilizantes/química , Células RAW 264.7
10.
Langmuir ; 32(24): 6185-93, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27244119

RESUMEN

Nanostructured mesoscale materials find wide-ranging applications in medicine and energy. Top-down manufacturing schemes are limited by the smallest dimension accessible; therefore, we set out to study a bottom-up approach mimicking biological systems, which self-assemble into systems that orchestrate complex energy conversion functionalities. Inspired by nature, we turned toward protein-based nanoparticle structures formed by plant viruses, specifically the cowpea mosaic virus (CPMV). We report the formation of hierarchical CPMV nanoparticle assemblies on colloidal-patterned, conducting polymer arrays using a protocol combining colloidal lithography, electrochemical polymerization, and electrostatic adsorption. In this approach, a hexagonally close-packed array of polystyrene microspheres was assembled on a conductive electrode to function as the sacrificial colloidal template. A thin layer of conducting polypyrrole material was electrodeposited within the interstices of the colloidal microspheres and monitored in situ using electrochemical quartz crystal microbalance with dissipation (EC-QCM-D). Etching the template revealed an inverse opaline conducting polymer pattern capable of forming strong electrostatic interactions with CPMV and therefore enabling immobilization of CPMV on the surface. The CPMV-polymer films were characterized by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). Furthermore, molecular probe diffusion experiments revealed selective ion transport properties as a function of the presence of the CPMV nanoparticles on the surface. Lastly, by utilizing its electromechanical behavior, the polymer/protein membrane was electrochemically released as a free-standing film, which can potentially be used for developing high surface area cargo delivery systems, stimuli-responsive plasmonic devices, and chemical and biological sensors.


Asunto(s)
Comovirus , Nanopartículas , Polímeros , Tecnicas de Microbalanza del Cristal de Cuarzo
11.
Biomacromolecules ; 16(3): 860-7, 2015 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-25715836

RESUMEN

Polymeric fibers are of increasing interest to regenerative medicine, as materials made from these fibers are porous, allowing for cell infiltration, influx of nutrients, and efflux of waste products. Recently, multilayered coextrusion has emerged as a scalable and rapid fabrication method to yield microscale to submicron fibers. In this report, we describe the multilayered coextrusion of aligned poly(ε-caprolactone) (PCL) fibers, followed by a simple photochemical patterning to create surface-immobilized gradients onto the polymer fibers. PCL fibers were photochemically decorated with a linear gradient of propargyl benzophenone using a gradient photomask to control light source intensity. The pendant alkynes were then able to undergo the copper-catalyzed azide-alkyne cycloaddition reaction with an azide-modified IKVAV peptide to further functionalize the surface. Gradient-modified IKVAV fibers were evaluated for neural cell adhesion and neural differentiation, using PC-12 cells cultured onto the fibers. The aligned gradient fibers provided directional cues for neurite outgrowth and alignment of neural cells, as observed by cellular elongation, neurite differentiation, and orientation. The work presented herein describes a scalable fiber system combined with simple chemical patterning to generate aligned fibers with controlled surface gradients as cell-seeding scaffolds.


Asunto(s)
Poliésteres/química , Animales , Técnicas de Cultivo de Célula , Proliferación Celular , Medios de Cultivo/química , Ensayo de Materiales , Neurogénesis , Neuronas/fisiología , Células PC12 , Ratas , Propiedades de Superficie , Andamios del Tejido/química , Humectabilidad
12.
Langmuir ; 30(28): 8391-9, 2014 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-24960617

RESUMEN

The tunable nature of weak polyelectrolyte multilayers makes them ideal candidates for drug loading and delivery, water filtration, and separations, yet the lateral transport of charged molecules in these systems remains largely unexplored at the single molecule level. We report the direct measurement of the charge-dependent, pH-tunable, multimodal interaction of single charged molecules with a weak polyelectrolyte multilayer thin film, a 10 bilayer film of poly(acrylic acid) and poly(allylamine hydrochloride) PAA/PAH. Using fluorescence microscopy and single-molecule tracking, two modes of interaction were detected: (1) adsorption, characterized by the molecule remaining immobilized in a subresolution region and (2) diffusion trajectories characteristic of hopping (D ∼ 10(-9) cm(2)/s). Radius of gyration evolution analysis and comparison with simulated trajectories confirmed the coexistence of the two transport modes in the same single molecule trajectories. A mechanistic explanation for the probe and condition mediated dynamics is proposed based on a combination of electrostatics and a reversible, pH-induced alteration of the nanoscopic structure of the film. Our results are in good agreement with ensemble studies conducted on similar films, confirm a previously-unobserved hopping mechanism for charged molecules in polyelectrolyte multilayers, and demonstrate that single molecule spectroscopy can offer mechanistic insight into the role of electrostatics and nanoscale tunability of transport in weak polyelectrolyte multilayers.


Asunto(s)
Iones/química , Nanotecnología/métodos , Polímeros/química , Resinas Acrílicas/química , Concentración de Iones de Hidrógeno , Microscopía Fluorescente
13.
Phys Chem Chem Phys ; 16(18): 8589-93, 2014 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-24671564

RESUMEN

The photo- (PL) and electroluminescence (EL) properties of CdSe-TOPO quantum dots (QDs) doped into a PVK:PBD host matrix with a double-layer device configuration [PEDOT:PSS/PVK:PBD/QDs/LiF/Al] are investigated. Depending on the concentrations of CdSe-TOPO QDs, EL properties are changed including the emitted colors. At a low QD concentration (1 wt%), QD-light emitting diode (QD-LED) shows a broad EL band with dominant QD emission and minor emissions (electromer from PVK and exciplex from the PVK:PBD blend). However, at a higher QD concentration (5 wt%) there are two competitive emission peaks observed in the EL spectrum, arising from exciplex emission in the PVK:PBD blend (shorter wavelength) and QD emission at CdSe-TOPO. These EL peaks are closely related to Förster energy transfer and charge transfer, respectively. With increasing bias voltage, the EL peak at shorter wavelength gradually decreases and the emitted color is changed from blue to dark green in the QD-LED. As a result, both the concentration and applied bias voltage are important tunable factors in the emitted colors.

14.
Acta Crystallogr Sect E Struct Rep Online ; 70(Pt 7): o814-5, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25161593

RESUMEN

The structure of the title compound, C16H14O2, features a dihedral angle of 54.4 (3)° between the aromatic rings. The allyl group is rotated by 37.4 (4)° relative to the adjacent benzene ring. The crystal packing is characterized by numerous C-H⋯O and C-H⋯π inter-actions. Most of these inter-actions occur in layers along (011). The layers are linked by C-H⋯π inter-actions along [100], forming a three-dimensional network.

15.
Acta Crystallogr Sect E Struct Rep Online ; 70(Pt 2): o117, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24764846

RESUMEN

The title compound, C26H26S4, shows a dihedral angle of 76.64 (15)° between the central and peripheral benzene rings. An inversion center is located at the centroid of the thio-benzoyl ring. In the crystal, weak C-H⋯S inter-actions form C(5) chains along [001]. There are no classical hydrogen bonds.

16.
ACS Appl Mater Interfaces ; 16(10): 12232-12243, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38422547

RESUMEN

Patterned surfaces with distinct regularity and structured arrangements have attracted great interest due to their extensive promising applications. Although colloidal patterning has conventionally been used to create such surfaces, herein, we introduce a novel 3D patterned poly(N-isopropylacrylamide) (PNIPAM) surface, synthesized by using a combination of colloidal templating and surface-initiated photoinduced electron transfer-reversible addition-fragmentation chain transfer (SI-PET-RAFT) polymerization. In order to investigate the temperature-driven 3D morphological variations at a lower critical solution temperature (LCST) of ∼32 °C, multifaceted characterization techniques were employed. Atomic force microscopy confirmed the morphological transformations at 20 and 40 °C, while water contact angle measurements, upon heating, revealed distinct trends, offering insights into the correlation between surface wettability and topography adaptations. Moreover, quartz crystal microbalance with dissipation monitoring and electrochemical measurements were employed to detect the topographical adjustments of the unique hollow capsule structure within the LCST. Tests using different sizes of PSNPs shed light on the size-selective capture-release potential of the patterned PNIPAM, accentuating its biomimetic open-close behavior. Notably, our approach negates the necessity for expensive proteins, harnessing temperature adjustments to facilitate the noninvasive and efficient reversible capture and release of nanostructures. This advancement hopes to pave the way for future innovative cellular analysis platforms.

17.
J Nanosci Nanotechnol ; 13(3): 2201-5, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23755666

RESUMEN

In this study, we report the interfacial Langmuir monolayer behavior and surface morphological features of a dendronic terthiophene linked via a tetraethylene glycol moiety (3T5O3T) and its complexation with calcium cations. Surface pressure-mean molecular area (pi-A) isotherms show distinct behavior due to the secondary interaction of cations with the ionophore units. Furthermore, two Langmuir-Schaefer (LS) films with and without calcium cations exhibited significantly different surface morphological features from atomic force microscopy (AFM) imaging. Quartz crystal microbalance (QCM) measurements reveal changes in frequency and resistance enabling selective sensing of calcium cations on the LS films. Thus, well-organized 3T5O3T LS films on the solid substrates are potential candidates for highly selective chemosensing.

18.
J Nanosci Nanotechnol ; 13(11): 7637-42, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24245306

RESUMEN

In this study, we report the copolymerization, film properties, and HOMO/LUMO levels of the first generation (G1) poly(benzyl ether) dendrimer functionalized on its periphery with terthiophene and terthiophene monomers. Pure G1 dendrimer (DN1), 1:1 and 1:18 molar ratios of the G1 dendrimer and the monomer (e.g., DNTT11 and DNTT118, respectively) are used to compare film formation and HOMO/LUMO levels. The conjugated polymer network (CPN) film obtained from the highest molar ratio of terthiophene monomers shows smooth film formation. Addition of the terthiophene monomer for electrochemical cross-linking controls the surface morphology and the tunability of energy levels of the CPN films. Furthermore, in situ electrochemical quartz crystal microbalance (EQCM) measurements are performed to characterize frequency change (corresponding to mass change) per sweep cycle and relative viscoelastic properties through resonant resistance-resonant frequency (R-F) diagram during the formation of each CPN film. The DN1 film has relatively higher eleastic film and mass loading on the QCM surface than the copolymeried DNTT11 and DNTT118 films. Furthermore, the addition of terthiophene monomers increases the viscosity of the film due to the effect of introducing linear species on the CNP film formation in solution. Thus, the copolymerization of eletroactive dendrimers with the same electroactive monomers enables control on surface morphological features and energy bandgap for future optoelectronic device applications and physical properties (i.e., viscoelasticity) of the films.


Asunto(s)
Dendrímeros/química , Éteres/química , Membranas Artificiales , Nanoestructuras/química , Nanoestructuras/ultraestructura , Polímeros/química , Tiofenos/química , Conductividad Eléctrica , Ensayo de Materiales , Tamaño de la Partícula
19.
Acta Crystallogr Sect E Struct Rep Online ; 69(Pt 5): o774, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23723918

RESUMEN

The mol-ecular structure of the title compound, C9H14O4S3, exhibits intra-molecular C-H⋯S hydrogen bonds. In the crystal, pairs of O-H⋯O hydrogen bonds lead to the formation of centrosymmetric dimers, which are in turn connected by weak C-H⋯O inter-actions. The combination of these inter-actions generates edge-fused R 2 (2)(8) and R 2 (2)(20) rings running along [211].

20.
ACS Appl Mater Interfaces ; 15(1): 2329-2340, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36577139

RESUMEN

Classic design of experiment relies on a time-intensive workflow that requires planning, data interpretation, and hypothesis building by experienced researchers. Here, we describe an integrated, machine-intelligent experimental system which enables simultaneous dynamic tests of electrical, optical, gravimetric, and viscoelastic properties of materials under a programmable dynamic environment. Specially designed software controls the experiment and performs on-the-fly extensive data analysis and dynamic modeling, real-time iterative feedback for dynamic control of experimental conditions, and rapid visualization of experimental results. The system operates with minimal human intervention and enables time-efficient characterization of complex dynamic multifunctional environmental responses of materials with simultaneous data processing and analytics. The system provides a viable platform for artificial intelligence (AI)-centered material characterization, which, when coupled with an AI-controlled synthesis system, could lead to accelerated discovery of multifunctional materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA