Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 249
Filtrar
1.
Nature ; 586(7831): 714-719, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33116286

RESUMEN

Boronic acids and their derivatives are some of the most useful reagents in the chemical sciences1, with applications spanning pharmaceuticals, agrochemicals and functional materials. Catalytic C-H borylation is a powerful method for introducing these and other boron groups into organic molecules because it can be used to directly functionalize C-H bonds of feedstock chemicals without the need for substrate pre-activation1-3. These reactions have traditionally relied on precious-metal catalysts for C-H bond cleavage and, as a result, display high selectivity for borylation of aromatic C(sp2)-H bonds over aliphatic C(sp3)-H bonds4. Here we report a mechanistically distinct, metal-free borylation using hydrogen atom transfer catalysis5, in which homolytic cleavage of C(sp3)-H bonds produces alkyl radicals that are borylated by direct reaction with a diboron reagent. The reaction proceeds by violet-light photoinduced electron transfer between an N-alkoxyphthalimide-based oxidant and a chloride hydrogen atom transfer catalyst. Unusually, stronger methyl C-H bonds are borylated preferentially over weaker secondary, tertiary and even benzylic C-H bonds. Mechanistic studies indicate that the high methyl selectivity is a result of the formation of a chlorine radical-boron 'ate' complex that selectively cleaves sterically unhindered C-H bonds. By using a photoinduced hydrogen atom transfer strategy, this metal-free C(sp3)-H borylation enables unreactive alkanes to be transformed into valuable organoboron reagents under mild conditions and with selectivities that contrast with those of established metal-catalysed protocols.

2.
J Am Chem Soc ; 146(20): 13719-13726, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38721780

RESUMEN

With increasing interest in constructing more three-dimensional entities, there has been growing interest in cross-coupling reactions that forge C(sp3)-C(sp3) bonds, which leads to additional challenges as it is not just a more difficult bond to construct but issues of stereocontrol also arise. Herein, we report the stereocontrolled cross-coupling of enantioenriched boronic esters with racemic allylic carbonates enabled by iridium catalysis, leading to the formation of C(sp3)-C(sp3) bonds with single or vicinal stereogenic centers. The method shows broad substrate scope, enabling primary, secondary, and even tertiary boronic esters to be employed, and can be used to prepare any of the four possible stereoisomers of a coupled product with vicinal chiral centers. The new method, which combines the simultaneous enantiospecific reaction of a chiral nucleophile with the enantioselective reaction of a chiral electrophile in a single process, offers a solution for stereodivergent cross-coupling of two C(sp3) fragments.

3.
J Am Chem Soc ; 145(33): 18649-18657, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37552886

RESUMEN

Carbon-phosphorus bond formation is significant in synthetic chemistry because phosphorus-containing compounds offer numerous indispensable biochemical roles. While there is a plethora of methods to access organophosphorus compounds, phosphonylations of readily accessible alkyl radicals to form aliphatic phosphonates are rare and not commonly used in synthesis. Herein, we introduce a novel phosphorus radical trap "BecaP" that enables facile and efficient phosphonylation of alkyl radicals under visible light photocatalytic conditions. Importantly, the ambiphilic nature of BecaP allows redox neutral reactions with both nucleophilic (activated by single-electron oxidation) and electrophilic (activated by single-electron reduction) alkyl radical precursors. Thus, a broad scope of feedstock alkyl potassium trifluoroborate salts and redox active carboxylate esters could be employed, with each class of substrate proceeding through a distinct mechanistic pathway. The mild conditions are applicable to the late-stage installation of phosphonate motifs into medicinal agents and natural products, which is showcased by the straightforward conversion of baclofen (muscle relaxant) to phaclofen (GABAB antagonist).

4.
J Am Chem Soc ; 145(28): 15207-15217, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37410056

RESUMEN

Borylations of inert carbon-hydrogen bonds are highly useful for transforming feedstock chemicals into versatile organoboron reagents. Catalysis of these reactions has historically relied on precious-metal complexes, which promote dehydrogenative borylations with diboron reagents under oxidant-free conditions. Recently, photoinduced radical-mediated borylations involving hydrogen atom transfer pathways have emerged as attractive alternatives because they provide complimentary regioselectivities and proceed under metal-free conditions. However, these net oxidative processes require stoichiometric oxidants and therefore cannot compete with the high atom economy of their precious-metal-catalyzed counterparts. Herein, we report that CuCl2 catalyzes radical-mediated, dehydrogenative C(sp3)-H borylations of alkanes with bis(catecholato)diboron under oxidant-free conditions. This is a result of an unexpected dual role of the copper catalyst, which promotes oxidation of the diboron reagent to generate an electrophilic bis-boryloxide that acts as an effective borylating agent in subsequent redox-neutral photocatalytic C-H borylations.

5.
J Am Chem Soc ; 145(30): 16508-16516, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37471704

RESUMEN

Enantioenriched organoboron intermediates are important building blocks in organic synthesis and drug discovery. Recently, transition metal-catalyzed enantioselective 1,2-metalate rearrangements of alkenylboronates have emerged as an attractive protocol to access these valuable reagents by installing two different carbon fragments across C═C π-bonds. Herein, we report the development of an iridium-catalyzed asymmetric allylation-induced 1,2-metalate rearrangement of bicyclo[1.1.0]butyl (BCB) boronate complexes enabled by strain release, which allows asymmetric difunctionalization of C-C σ-bonds, including dicarbonation and carboboration. This protocol provides a variety of enantioenriched three-dimensional 1,1,3-trisubstituted cyclobutane products bearing a boronic ester that can be readily derivatized. Notably, the reaction gives trans diastereoisomers that result from an anti-addition across the C-C σ-bond, which is in contrast to the syn-additions observed for reactions promoted by PdII-aryl complexes and other electrophiles in our previous works. The diastereoselectivity has been rationalized based on a combination of experimental data and density functional theory calculations, which suggest that the BCB boronate complexes are highly nucleophilic and react via early transition states with low activation barriers.

6.
J Am Chem Soc ; 145(25): 14124-14132, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37326516

RESUMEN

Dihydrobenzofurans and indolines are important constituents of pharmaceuticals. Herein, we describe a novel strategy for their construction in which the aromatic ring is created de novo through an inverse-electron demand Diels-Alder reaction and cheletropic extrusion sequence of a 2-halothiophene-1,1-dioxide with an enol ether/enamide, followed by aromatization. Unusually, the aromatization process proved to be highly challenging, but it was discovered that treatment of the halocyclohexadienes with a base effected an α-elimination-aromatization reaction. Mechanistic investigation of this step using deuterium-labeling studies indicated the intermediacy of a carbene which undergoes a 1,2-hydrogen shift and subsequent aromatization. The methodology was applied to a modular and stereoselective total synthesis of the antiplatelet drug beraprost in only 8 steps from a key enal-lactone. This lactone provided the core of beraprost to which both its sidechains could be appended through a 1,4-conjugate addition process (lower ω-sidechain), followed by de novo construction of beraprost's dihydrobenzofuran (upper α-sidechain) using our newly developed methodology. Additionally, we have demonstrated the breadth of our newly established protocol in the synthesis of functionalized indolines, which occurred with high levels of regiocontrol. According to density-functional theory (DFT) calculations, the high selectivity originates from attractive London dispersion interactions in the TS of the Diels-Alder reaction.

7.
Chemistry ; 29(29): e202300008, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-36786481

RESUMEN

The use of metalated (aza)bicyclo[1.1.0]butanes in synthesis is currently experiencing a renaissance, as evidenced by the numerous reports in the last 5 years that have relied on such intermediates to undergo unique transformations or generate novel fragments. Since their discovery, these species have been demonstrated to participate in a wide range of reactions with carbon and heteroatom electrophiles, as well as metal complexes, to facilitate the rapid diversification of (aza)bicyclo[1.1.0]butane-containing compounds. Key to this is the relative acidity of the bridgehead C-H bonds which promotes facile deprotonation and subsequent functionalization of an unsubstituted position on the carbon framework via the intermediacy of a metalated (aza)bicyclo[1.1.0]butane. Additionally, the late-stage incorporation of deuterium atoms in strained fragments has led to the elucidation of numerous reaction mechanisms that involve strained bicycles. The continued investigation into the inimitable reactivity of metalated bicycles will cement their importance within the field of organometallic chemistry.

8.
Nature ; 547(7664): 436-440, 2017 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-28748934

RESUMEN

Small-molecule, biologically active natural products continue to be our most rewarding source of, and inspiration for, new medicines. Sometimes we happen upon such molecules in minute quantities in unique, difficult-to-reach, and often fleeting environments, perhaps never to be discovered again. In these cases, determining the structure of a molecule-including assigning its relative and absolute configurations-is paramount, enabling one to understand its biological activity. Molecules that comprise stereochemically complex acyclic and conformationally flexible carbon chains make such a task extremely challenging. The baulamycins (A and B) serve as a contemporary example. Isolated in small quantities and shown to have promising antimicrobial activity, the structure of the conformationally flexible molecules was determined largely through J-based configurational analysis, but has been found to be incorrect. Our subsequent campaign to identify the true structures of the baulamycins has revealed a powerful method for the rapid structural elucidation of such molecules. Specifically, the prediction of nuclear magnetic resonance (NMR) parameters through density functional theory-combined with an efficient sequence of boron-based synthetic transformations, which allowed an encoded (labelled) mixture of natural-product diastereomers to be prepared-enabled us rapidly to pinpoint and synthesize the correct structures.


Asunto(s)
Alcoholes Grasos/química , Alcoholes Grasos/síntesis química , Espectroscopía de Resonancia Magnética , Estructura Molecular , Resorcinoles/química , Resorcinoles/síntesis química , Técnicas de Química Sintética , Modelos Moleculares , Estereoisomerismo
9.
Angew Chem Int Ed Engl ; 62(38): e202309684, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37522816

RESUMEN

Decarboxylative halogenation reactions of alkyl carboxylic acids are highly valuable reactions for the synthesis of structurally diverse alkyl halides. However, many reported protocols rely on stoichiometric strong oxidants or highly electrophilic halogenating agents. Herein, we describe visible-light photoredox-catalyzed decarboxylative halogenation reactions of N-hydroxyphthalimide-activated carboxylic acids that avoid stoichiometric oxidants and use inexpensive inorganic halide salts as the halogenating agents. Bromination with lithium bromide proceeds under simple, transition-metal-free conditions using an organic photoredox catalyst and no other additives, whereas dual photoredox-copper catalysis is required for chlorination with lithium chloride. The mild conditions display excellent functional-group tolerance, which is demonstrated through the transformation of a diverse range of structurally complex carboxylic acid containing natural products into the corresponding alkyl bromides and chlorides. In addition, we show the generality of the dual photoredox-copper-catalyzed decarboxylative functionalization with inorganic salts by extension to thiocyanation with potassium thiocyanide, which was applied to the synthesis of complex alkyl thiocyanates.

10.
Angew Chem Int Ed Engl ; 62(7): e202217064, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36507714

RESUMEN

The development of preparative methods for the synthesis of four-membered carbocycles is gaining increasing importance due to the widespread utility of cyclic compounds in medicinal chemistry. Herein, we report the development of a new methodology for the production of spirocyclic epoxides and aziridines containing a cyclobutane motif. In a two-step one-pot process, a bicyclo[1.1.0]butyl sulfoxide is lithiated and added to a ketone, aldehyde or imine, and the resulting intermediate is cross-coupled with an aryl triflate through C-C σ-bond alkoxy- or aminopalladation with concomitant epoxide or aziridine formation. After careful optimization, a remarkably efficient reaction was conceived that tolerated a broad variety of both aromatic and aliphatic substrates. Lastly, through several high yielding ring-opening reactions, we demonstrated the excellent applicability of the products as modular building blocks for the introduction of three-dimensional structures into target molecules.

11.
Angew Chem Int Ed Engl ; 62(23): e202301209, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37017133

RESUMEN

With over 60 % of protein-protein interfaces featuring an α-helix, the use of α-helix mimetics as inhibitors of these interactions is a prevalent therapeutic strategy. However, methods to control the conformation of mimetics, thus enabling maximum efficacy, can be restrictive. Alternatively, conformation can be controlled through the introduction of destabilizing syn-pentane interactions. This tactic, which is often adopted by Nature, is not a common feature of lead optimization owing to the significant synthetic effort required. Through assembly-line synthesis with NMR and computational analysis, we have shown that alternating syn-anti configured contiguously substituted hydrocarbons, by avoiding syn-pentane interactions, adopt well-defined conformations that present functional groups in an arrangement that mimics the α-helix. The design of a p53 mimetic that binds to Mdm2 with moderate to good affinity, demonstrates the therapeutic promise of these scaffolds.


Asunto(s)
Pentanos , Proteínas , Modelos Moleculares , Conformación Proteica en Hélice alfa , Proteínas/química
12.
Angew Chem Int Ed Engl ; 62(50): e202312054, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37877778

RESUMEN

Enones are widely utilized linchpin functional groups in chemical synthesis and molecular biology. We herein report the direct conversion of boronic esters into enones using commercially available methoxyallene as a three-carbon building block. Following boronate complex formation by reaction of the boronic ester with lithiated-methoxyallene, protonation triggers a stereospecific 1,2-migration before oxidation generates the enone. The protocol shows broad substrate scope and complete enantiospecificity is observed with chiral migrating groups. In addition, various electrophiles could be used to induce 1,2-migration and give a much broader range of α-functionalized enones. Finally, the methodology was applied to a 14-step synthesis of the enone-containing polyketide 10-deoxymethynolide.

13.
J Am Chem Soc ; 144(18): 7995-8001, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35499478

RESUMEN

Bastimolide B is a polyhydroxy macrolide isolated from marine cyanobacteria displaying antimalarial activity. It features a dense array of hydroxylated stereogenic centers with 1,5-relationships along a hydrocarbon chain. These 1,5-polyols represent a particularly challenging motif for synthesis, as the remote position of the stereocenters hampers stereocontrol. Herein, we present a strategy for 1,5-polyol stereocontrolled synthesis based on iterative boronic ester homologation with enantiopure magnesium carbenoids. By merging boronic ester homologation and transition-metal-catalyzed alkene hydroboration and diboration, the acyclic backbone of bastimolide B was rapidly assembled from readily available building blocks with full control over the remote stereocenters, enabling the total synthesis to be completed in 16 steps (LLS).


Asunto(s)
Antimaláricos , Ésteres , Boro , Macrólidos , Estereoisomerismo
14.
Angew Chem Int Ed Engl ; 61(35): e202205816, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-35639345

RESUMEN

The synthesis of molecules bearing two or more contiguous, quaternary stereocenters is challenging, owing to the difficulty in controlling stereochemistry whilst simultaneously constructing a sterically congested motif. Herein, we report the electrophile-induced ring contractive 1,2-metallate rearrangement of 6-membered cyclic alkenyl boronate complexes for the synthesis of cyclopentyl boronic esters bearing two contiguous, fully substituted stereocenters with high levels of stereocontrol. Remarkably, simple variation of the reaction solvent enabled their diastereodivergent construction with facile access to complementary diastereomeric pairs. The utility of our methodology is demonstrated in the asymmetric total synthesis of (+)-herbertene-1,14-diol.


Asunto(s)
Boro , Ésteres , Ésteres/química , Estereoisomerismo
15.
Angew Chem Int Ed Engl ; 61(3): e202114235, 2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-34780681

RESUMEN

The identification of spiro N-heterocycles as scaffolds that display structural novelty, three-dimensionality, beneficial physicochemical properties, and enable the controlled spatial disposition of substituents has led to a surge of interest in utilizing these compounds in drug discovery programs. Herein, we report the strain-release-driven Friedel-Crafts spirocyclization of azabicyclo[1.1.0]butane-tethered (hetero)aryls for the synthesis of a unique library of azetidine spiro-tetralins. The reaction was discovered to proceed through an unexpected interrupted Friedel-Crafts mechanism, generating a highly complex azabicyclo[2.1.1]hexane scaffold. This dearomatized intermediate, formed exclusively as a single diastereomer, can be subsequently converted to the Friedel-Crafts product upon electrophilic activation of the tertiary amine, or trapped as a Diels-Alder adduct in one-pot. The rapid assembly of molecular complexity demonstrated in these reactions highlights the potential of the strain-release-driven spirocyclization strategy to be utilized in the synthesis of medicinally relevant scaffolds.

16.
Angew Chem Int Ed Engl ; 61(37): e202207063, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-35851520

RESUMEN

Amino phosphonates exhibit potent inhibitory activity for a wide range of biological processes due to their specific structural and electronic properties, making them important in a plethora of applications, including as enzyme inhibitors, herbicides, antiviral, antibacterial, and antifungal agents. While the traditional synthesis of α-amino phosphonates has relied on the multicomponent Kabachnik-Fields reaction, we herein describe a novel and facile conversion of activated derivatives of α-amino acids directly to their respective α-amino phosphonate counterparts via a decarboxylative radical-polar crossover process enabled by the use of visible-light organophotocatalysis. The novel method shows broad applicability across a range of natural and synthetic amino acids, operates under mild conditions, and has been demonstrated to successfully achieve the late-stage functionalization of drug molecules.


Asunto(s)
Organofosfonatos , Aminoácidos/química , Catálisis , Estructura Molecular , Oxidación-Reducción , Fosforilación
17.
Angew Chem Int Ed Engl ; 61(52): e202214049, 2022 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-36300572

RESUMEN

Despite the favorable properties that azetidine rings can engender on drug-compounds, methods for the diversity-oriented synthesis of azetidine-based structures are significantly underdeveloped. Herein, we report the successful realization of a multicomponent [1,2]-Brook rearrangement/strain-release-driven anion relay sequence and its application to the modular synthesis of substituted azetidines. The rapidity of the reaction, as confirmed by in situ infra-red spectroscopy, leverages the strain-release ring-opening of azabicyclo[1.1.0]butane to drive the equilibrium of the Brook rearrangement. The three electrophilic coupling partners, added sequentially to azabicyclo[1.1.0]butyl-lithium, could be individually varied to access a diverse compound library. The utility of this methodology was demonstrated in a 4-step synthesis of the EP2 receptor antagonist PF-04418948.


Asunto(s)
Azetidinas , Azetidinas/química , Ciclización , Aniones/química
18.
Angew Chem Int Ed Engl ; 61(34): e202207988, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35779000

RESUMEN

Site-selective transition-metal-catalyzed mono-deboronative cross-couplings of 1,2-bis-boronic esters are valuable methods for the synthesis of functionalized organoboron compounds. However, such cross-couplings are limited to reaction of the sterically less hindered primary boronic ester. Herein, we report a nickel/photoredox-catalyzed mono-deboronative arylation of 1,2-bis-boronic esters that is selective for coupling of the more sterically hindered secondary/tertiary position. This is achieved by taking advantage of a 1,2-boron shift of primary ß-boryl radicals to the thermodynamically favored secondary/tertiary radicals, which are subsequently intercepted by the nickel catalyst to enable arylation. The mild conditions are amenable to a broad range of aryl halides to give ß-aryl boronic ester products in good yields and with high regioselectivity. This method also allows stereodivergent coupling of cyclic cis-1,2-bis-boronic esters to give trans-substituted products.


Asunto(s)
Boro , Níquel , Catálisis , Ésteres , Estructura Molecular
19.
Angew Chem Int Ed Engl ; 61(18): e202202061, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35213775

RESUMEN

1,2-Bis-boronic esters are useful synthetic intermediates particularly as the two boronic esters can be selectively functionalized. Usually, the less hindered primary boronic ester reacts, but herein, we report a coupling reaction that enables the reversal of this selectivity. This is achieved through the formation of a boronate complex with an electron-rich aryllithium which, in the presence of an electron-deficient aryl nitrile, leads to the formation of an electron donor-acceptor complex. Following visible-light photoinduced electron transfer, a primary radical is generated which isomerizes to the more stable secondary radical before radical-radical coupling with the arene radical-anion, giving ß-aryl primary boronic ester products. The reactions proceed under catalyst-free conditions. This method also allows stereodivergent coupling of cyclic cis-1,2-bis-boronic esters to provide trans-substituted products, complementing the selectivity observed in the Suzuki-Miyaura reaction.

20.
Angew Chem Int Ed Engl ; 61(45): e202208854, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36111975

RESUMEN

Generality in analytical chemistry can be manifested in impactful platforms that can streamline modern organic synthesis and biopharmaceutical processes. We herein introduce a hybrid separation technique named Dual-Gradient Unified Chromatography (DGUC), which is built upon an automated dynamic modulation of CO2 , organic modifier, and water blends with various buffers. This concept enables simultaneous multicomponent analysis of both small and large molecules across a wide polarity range in single experimental runs. After a careful investigation of its fundamental aspects, a DGUC-DAD-MS screening workflow that combines multiple orthogonal column and mobile phase choices across a far-reaching universal elution profile is also reported. The power of this framework is demonstrated with new analytical applications guiding academic and industrial laboratories in the development of new (bio)pharmaceutical targets (e.g. synthetic intermediates, nucleosides, cyclic and linear peptides, proteins, antibody drug conjugates).


Asunto(s)
Cromatografía , Proteínas , Proteínas/análisis , Péptidos , Agua/química , Nucleósidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA