Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Exp Bot ; 73(13): 4546-4561, 2022 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-35167679

RESUMEN

Transcription factors control gene expression, leading to regulation of biological processes that determine plant development and adaptation to the environment. Land colonization by plants occurred 450-470 million years ago and was accompanied by an increase in the complexity of transcriptional regulation associated to transcription factor gene expansions. AP2/ERF, bHLH, MYB, NAC, GRAS, and WRKY transcription factor families increased in land plants compared with algae. In angiosperms, they play crucial roles in regulating plant growth and responses to environmental stressors. However, less information is available in bryophytes and only in a few cases is the functional role of moss transcription factors in stress mechanisms known. In this review, we discuss current knowledge of the transcription factor families involved in development and defense responses to stress in mosses and other bryophytes. By exploring and analysing the Physcomitrium patens public database and published transcriptional profiles, we show that a high number of AP2/ERF, bHLH, MYB, NAC, GRAS, and WRKY genes are differentially expressed in response to abiotic stresses and during biotic interactions. Expression profiles together with a comprehensive analysis provide insights into relevant transcription factors involved in moss defenses, and hint at distinct and conserved biological roles between bryophytes and angiosperms.


Asunto(s)
Bryopsida , Factores de Transcripción , Bryopsida/genética , Bryopsida/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Plant Physiol ; 180(1): 392-403, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30814131

RESUMEN

Repressive epigenetic marks, such as DNA and histone methylation, are sometimes located within introns. In Arabidopsis (Arabidopsis thaliana), INCREASE IN BONSAI METHYLATION2 (IBM2), an RNA-binding protein containing a bromo-adjacent homology domain, is required to process functional transcript isoforms of genes carrying intronic heterochromatin. In a genetic screen for suppressors of the ibm2 mutation, we identified FPA, an RNA-binding protein that promotes use of proximal polyadenylation sites in genes targeted by IBM2, including IBM1 encoding an essential H3K9 histone demethylase and the disease resistance gene RECOGNITION OF PERONOSPORA PARASITICA7 Both IBM2 and FPA are involved in the processing of their common mRNA targets: Transcription of IBM2 target genes is restored when FPA is mutated in ibm2 and impaired in transgenic plants overexpressing FPA By contrast, transposons targeted by IBM2 and localized outside introns are not under this antagonistic control. The DNA methylation patterns of some genes and transposons are modified in fpa plants, including the large intron of IBM1, but these changes are rather limited and reversed when the mutant is complemented, indicating that FPA has a restricted role in mediating silencing. These data reveal a complex regulation by IBM2 and FPA pathways in processing mRNAs of genes bearing heterochromatic marks.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Heterocromatina/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Arabidopsis/genética , Metilación de ADN , Elementos Transponibles de ADN , Genes Supresores , Intrones , Histona Demetilasas con Dominio de Jumonji/genética , Mutación , Plantas Modificadas Genéticamente , Poliadenilación , ARN Mensajero/genética , Proteínas de Unión al ARN/genética
3.
Proc Natl Acad Sci U S A ; 114(16): E3354-E3363, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28373552

RESUMEN

"Too much of a good thing" perfectly describes the dilemma that living organisms face with metals. The tight control of metal homeostasis in cells depends on the trafficking of metal transporters between membranes of different compartments. However, the mechanisms regulating the location of transport proteins are still largely unknown. Developing Arabidopsis thaliana seedlings require the natural resistance-associated macrophage proteins (NRAMP3 and NRAMP4) transporters to remobilize iron from seed vacuolar stores and thereby acquire photosynthetic competence. Here, we report that mutations in the pleckstrin homology (PH) domain-containing protein AtPH1 rescue the iron-deficient phenotype of nramp3nramp4 Our results indicate that AtPH1 binds phosphatidylinositol 3-phosphate (PI3P) in vivo and acts in the late endosome compartment. We further show that loss of AtPH1 function leads to the mislocalization of the metal uptake transporter NRAMP1 to the vacuole, providing a rationale for the reversion of nramp3nramp4 phenotypes. This work identifies a PH domain protein as a regulator of plant metal transporter localization, providing evidence that PH domain proteins may be effectors of PI3P for protein sorting.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte de Catión/metabolismo , Metales/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Raíces de Plantas/metabolismo , Secuencia de Aminoácidos , Arabidopsis/crecimiento & desarrollo , Secuencia de Bases , Transporte Iónico , Mutación , Fenotipo , Raíces de Plantas/crecimiento & desarrollo
4.
PLoS Genet ; 13(1): e1006551, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28060933

RESUMEN

The extent of epigenetic variation is currently well documented, but the number of natural epialleles described so far remains very limited. Determining the relevance of epigenetic changes for natural variation is an important question of research that we investigate by isolating natural epialleles segregating in Arabidopsis recombinant populations. We previously described a genetic incompatibility among Arabidopsis strains based on the silencing of a gene involved in fitness. Here, we isolated a new epiallele resulting from the silencing of a transfer-RNA editing gene in an Arabidopsis accession from the Netherlands (Nok-1). Crosses with the reference accession Col-0 show a complete incompatibility between this epiallele and another locus localized on a different chromosome. We demonstrate that conversion of an unmethylated version of this allele occurs in hybrids, associated with modifications of small RNA populations. These epialleles can also spontaneously revert within the population. Furthermore, we bring evidence that neither METHYLTRANSFERASE 1, maintaining methylation at CGs, nor components of RNA-directed DNA methylation, are key factors for the transmission of the epiallele over generations. This depends only on the self-reinforcing loop between CHROMOMETHYLASE 3 and KRYPTONITE, involving DNA methylated in the CHG context and histone H3 lysine 9 methylation. Our findings reveal a predominant role of this loop in maintaining a natural epiallele.


Asunto(s)
Arabidopsis/genética , Metilación de ADN , Epigénesis Genética , Retroalimentación Fisiológica , Silenciador del Gen , Histonas/metabolismo , Alelos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , ADN de Plantas/genética , Histonas/genética , Metiltransferasas/genética , Metiltransferasas/metabolismo , Procesamiento Proteico-Postraduccional
5.
Plant Cell Physiol ; 57(4): 764-75, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26556649

RESUMEN

In plant cells, anion channels and transporters are essential for key functions such as nutrition, ion homeostasis and resistance to biotic or abiotic stresses. We characterized AtCLCg, a member of the chloride channel (CLC) family in Arabidopsis localized in the vacuolar membrane. When grown on NaCl or KCl, atclcg knock-out mutants showed a decrease in biomass. In the presence of NaCl, these mutants overaccumulate chloride in shoots. No difference in growth was detected in response to osmotic stress by mannitol. These results suggest a physiological function of AtCLCg in the chloride homeostasis during NaCl stress. AtCLCg shares a high degree of identity (62%) with AtCLCc, another vacuolar CLC essential for NaCl tolerance. However, the atclcc atclccg double mutant is not more sensitive to NaCl than single mutants. As the effects of both mutations are not additive, gene expression analyses were performed and revealed that: (i)AtCLCg is expressed in mesophyll cells, hydathodes and phloem while AtCLCc is expressed in stomata; and (ii)AtCLCg is repressed in the atclcc mutant background, and vice versa. Altogether these results demonstrate that both AtCLCc and AtCLCg are important for tolerance to excess chloride but not redundant, and form part of a regulatory network controlling chloride sensitivity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Canales de Cloruro/metabolismo , Arabidopsis/citología , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/genética , Canales de Cloruro/genética , Células del Mesófilo/metabolismo , Presión Osmótica , Tolerancia a la Sal/fisiología , Cloruro de Sodio/farmacología , Estrés Fisiológico
6.
Plant Physiol ; 169(1): 748-59, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26232490

RESUMEN

To improve seed iron (Fe) content and bioavailability, it is crucial to decipher the mechanisms that control Fe storage during seed development. In Arabidopsis (Arabidopsis thaliana) seeds, most Fe is concentrated in insoluble precipitates, with phytate in the vacuoles of cells surrounding the vasculature of the embryo. NATURAL RESISTANCE ASSOCIATED-MACROPHAGE PROTEIN3 (AtNRAMP3) and AtNRAMP4 function redundantly in Fe retrieval from vacuoles during germination. When germinated under Fe-deficient conditions, development of the nramp3nramp4 double mutant is arrested as a consequence of impaired Fe mobilization. To identify novel genes involved in seed Fe homeostasis, we screened an ethyl methanesulfonate-mutagenized population of nramp3nramp4 seedlings for mutations suppressing their phenotypes on low Fe. Here, we report that, among the suppressors, two independent mutations in the VACUOLAR IRON TRANSPORTER1 (AtVIT1) gene caused the suppressor phenotype. The AtVIT1 transporter is involved in Fe influx into vacuoles of endodermal and bundle sheath cells. This result establishes a functional link between Fe loading in vacuoles by AtVIT1 and its remobilization by AtNRAMP3 and AtNRAMP4. Moreover, analysis of subcellular Fe localization indicates that simultaneous disruption of AtVIT1, AtNRAMP3, and AtNRAMP4 limits Fe accumulation in vacuolar globoids.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Transporte de Catión/genética , Hierro/metabolismo , Mutación/genética , Vacuolas/metabolismo , Alelos , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Proteínas de Transporte de Catión/metabolismo , Cotiledón/efectos de los fármacos , Cotiledón/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Técnicas de Inactivación de Genes , Genes de Plantas , Genes Supresores , Germinación/efectos de los fármacos , Hierro/farmacología , Modelos Biológicos , Mutagénesis , Fenotipo , Epidermis de la Planta/efectos de los fármacos , Epidermis de la Planta/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Espectrometría por Rayos X , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Vacuolas/efectos de los fármacos
7.
Plant Cell Environ ; 36(4): 804-17, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22998565

RESUMEN

Cadmium (Cd) is highly toxic to plants causing growth reduction and chlorosis. It binds thiols and competes with essential transition metals. It affects major biochemical processes such as photosynthesis and the redox balance, but the connection between cadmium effects at the biochemical level and its deleterious effect on growth has seldom been established. In this study, two Cd hypersensitive mutants, cad1-3 impaired in phytochelatin synthase (PCS1), and nramp3nramp4 impaired in release of vacuolar metal stores, have been compared. The analysis combines genetics with measurements of photosynthetic and antioxidant functions. Loss of AtNRAMP3 and AtNRAMP4 function or of PCS1 function leads to comparable Cd sensitivity. Root Cd hypersensitivities conferred by cad1-3 and nramp3nramp4 are cumulative. The two mutants contrast in their tolerance to oxidative stress. In nramp3nramp4, the photosynthetic apparatus is severely affected by Cd, whereas it is much less affected in cad1-3. In agreement with chloroplast being a prime target for Cd toxicity in nramp3nramp4, the Cd hypersensitivity of this mutant is alleviated in the dark. The Cd hypersensitivity of nramp3nramp4 mutant highlights the critical role of vacuolar metal stores to supply essential metals to plastids and maintain photosynthetic function under Cd and oxidative stresses.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Cadmio/toxicidad , Cloroplastos/metabolismo , Regulación de la Expresión Génica de las Plantas , Vacuolas/metabolismo , Aminoaciltransferasas/genética , Aminoaciltransferasas/metabolismo , Antioxidantes/metabolismo , Antioxidantes/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Cadmio/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Clorofila/metabolismo , Homeostasis , Mutación , Estrés Oxidativo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/enzimología , Brotes de la Planta/genética , Brotes de la Planta/fisiología , Plantones/efectos de los fármacos , Plantones/enzimología , Plantones/genética , Plantones/fisiología , Regulación hacia Arriba
8.
Plant Physiol ; 155(4): 1920-35, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21282403

RESUMEN

In this study, we show that the Arabidopsis (Arabidopsis thaliana) transcription factor MYB46, previously described to regulate secondary cell wall biosynthesis in the vascular tissue of the stem, is pivotal for mediating disease susceptibility to the fungal pathogen Botrytis cinerea. We identified MYB46 by its ability to bind to a new cis-element located in the 5' promoter region of the pathogen-induced Ep5C gene, which encodes a type III cell wall-bound peroxidase. We present genetic and molecular evidence indicating that MYB46 modulates the magnitude of Ep5C gene induction following pathogenic insults. Moreover, we demonstrate that different myb46 knockdown mutant plants exhibit increased disease resistance to B. cinerea, a phenotype that is accompanied by selective transcriptional reprogramming of a set of genes encoding cell wall proteins and enzymes, of which extracellular type III peroxidases are conspicuous. In essence, our results substantiate that defense-related signaling pathways and cell wall integrity are interconnected and that MYB46 likely functions as a disease susceptibility modulator to B. cinerea through the integration of cell wall remodeling and downstream activation of secondary lines of defense.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Botrytis/patogenicidad , Enfermedades de las Plantas/genética , Factores de Transcripción/metabolismo , Arabidopsis/inmunología , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Sitios de Unión , Pared Celular/química , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno , Inmunidad Innata , Lignina/metabolismo , Mutagénesis Insercional , Análisis de Secuencia por Matrices de Oligonucleótidos , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/inmunología , Plantas Modificadas Genéticamente/microbiología , Regiones Promotoras Genéticas , ARN de Planta , Factores de Transcripción/genética
9.
Front Plant Sci ; 13: 908682, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36186018

RESUMEN

APETALA2/ethylene response factors (AP2/ERFs) transcription factors (TFs) have greatly expanded in land plants compared to algae. In angiosperms, AP2/ERFs play important regulatory functions in plant defenses against pathogens and abiotic stress by controlling the expression of target genes. In the moss Physcomitrium patens, a high number of members of the ERF family are induced during pathogen infection, suggesting that they are important regulators in bryophyte immunity. In the current study, we analyzed a P. patens pathogen-inducible ERF family member designated as PpERF24. Orthologs of PpERF24 were only found in other mosses, while they were absent in the bryophytes Marchantia polymorpha and Anthoceros agrestis, the vascular plant Selaginella moellendorffii, and angiosperms. We show that PpERF24 belongs to a moss-specific clade with distinctive amino acids features in the AP2 domain that binds to the DNA. Interestingly, all P. patens members of the PpERF24 subclade are induced by fungal pathogens. The function of PpERF24 during plant immunity was assessed by an overexpression approach and transcriptomic analysis. Overexpressing lines showed increased defenses to infection by the fungal pathogens Botrytis cinerea and Colletotrichum gloeosporioides evidenced by reduced cellular damage and fungal biomass compared to wild-type plants. Transcriptomic and RT-qPCR analysis revealed that PpERF24 positively regulates the expression levels of defense genes involved in transcriptional regulation, phenylpropanoid and jasmonate pathways, oxidative burst and pathogenesis-related (PR) genes. These findings give novel insights into potential mechanism by which PpERF24 increases plant defenses against several pathogens by regulating important players in plant immunity.

10.
Plant J ; 58(4): 578-91, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19175769

RESUMEN

Water scarcity and corresponding abiotic drought stress is one of the most important factors limiting plant performance and yield. In addition, plant productivity is severely compromised worldwide by infection with microbial pathogens. Two of the most prominent pathways responsible for drought tolerance and disease resistance to fungal pathogens in Arabidopsis are those controlled by the phytohormones abscisic acid (ABA) and the oxylipin methyl jasmonate (MeJA), respectively. Here, we report on the functional characterization of OCP3, a transcriptional regulator from the homeodomain (HD) family. The Arabidopsis loss-of-function ocp3 mutant exhibits both drought resistance and enhanced disease resistance to necrotrophic fungal pathogens. Double-mutant analysis revealed that these two resistance phenotypes have different genetic requirements. Whereas drought tolerance in ocp3 is ABA-dependent but MeJA-independent, the opposite holds true for the enhanced disease resistance characteristics. These observations lead us to propose a regulatory role of OCP3 in the adaptive responses to these two stresses, functioning as a modulator of independent and specific aspects of the ABA- and MeJA-mediated signal transduction pathways.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Deshidratación , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/metabolismo , Ácido Abscísico/metabolismo , Acetatos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/genética , Mutación , Oxilipinas/metabolismo , Fenotipo , Reguladores del Crecimiento de las Plantas/metabolismo , ARN de Planta/genética , Transducción de Señal , Factores de Transcripción/genética , Agua/fisiología
11.
J Fungi (Basel) ; 7(1)2020 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-33379257

RESUMEN

Botrytis cinerea is a necrotrophic pathogen that causes grey mold in many plant species, including crops and model plants of angiosperms. B. cinerea also infects and colonizes the bryophyte Physcomitrium patens (previously Physcomitrella patens), which perceives the pathogen and activates defense mechanisms. However, these defenses are not sufficient to stop fungal invasion, leading finally to plant decay. To gain more insights into B. cinerea infection and virulence strategies displayed during moss colonization, we performed genome wide transcriptional profiling of B. cinerea during different infection stages. We show that, in total, 1015 B. cinerea genes were differentially expressed in moss tissues. Expression patterns of upregulated genes and gene ontology enrichment analysis revealed that infection of P. patens tissues by B. cinerea depends on reactive oxygen species generation and detoxification, transporter activities, plant cell wall degradation and modification, toxin production and probable plant defense evasion by effector proteins. Moreover, a comparison with available RNAseq data during angiosperm infection, including Arabidopsis thaliana, Solanum lycopersicum and Lactuca sativa, suggests that B. cinerea has virulence and infection functions used in all hosts, while others are more specific to P. patens or angiosperms.

12.
Plant Cell ; 19(11): 3778-90, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17993621

RESUMEN

Here, we report the characterization of the Arabidopsis thaliana ocp11 (for overexpressor of cationic peroxidase11) mutant, in which a beta-glucuronidase reporter gene under the control of the H(2)O(2)-responsive Ep5C promoter is constitutively expressed. ocp11 plants show enhanced disease susceptibility to the virulent bacterium Pseudomonas syringae pv tomato DC3000 (P.s.t. DC3000) and also to the avirulent P.s.t. DC3000 carrying the effector avrRpm1 gene. In addition, ocp11 plants are also compromised in resistance to the nonhost pathogen P. syringae pv tabaci. Genetic and molecular analyses reveal that ocp11 plants are not affected in salicylic acid perception. We cloned OCP11 and show that it encodes ARGONAUTE4 (AGO4), a component of the pathway that mediates the transcriptional gene silencing associated with small interfering RNAs that direct DNA methylation at specific loci, a phenomenon known as RNA-directed DNA methylation (RdDM). Thus, we renamed our ocp11 mutant ago4-2, as it represents a different allele to the previously characterized recessive ago4-1. Both mutants decrease the extent of DNA cytosine methylation at CpNpG and CpHpH (asymmetric) positions present at different DNA loci and show commonalities in all of the molecular and phenotypic aspects that we have considered. Interestingly, we show that AGO4 works independently of other components of the RdDM pathway in mediating resistance to P.s.t. DC3000, and loss of function in other components of the pathway operating upstream of AGO4, such as RDR2 and DCL3, or operating downstream, such as DRD1, CMT3, DRM1, and DRM2, does not compromise resistance to this pathogen.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Arabidopsis/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Pseudomonas syringae/fisiología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Argonautas , Clonación Molecular , Metilación de ADN/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes Dominantes , Genes de Plantas , Inmunidad Innata/efectos de los fármacos , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/genética , Modelos Biológicos , Mutación/efectos de los fármacos , Fenotipo , Regiones Promotoras Genéticas/genética , Pseudomonas syringae/efectos de los fármacos , Ácido Salicílico/farmacología
13.
J Biol Chem ; 278(15): 12920-8, 2003 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-12538593

RESUMEN

Thioredoxin and glutathione systems are the major thiol-dependent redox systems in animal cells. They transfer via the reversible oxidoreduction of thiols the reducing equivalents of NADPH to numerous substrates and substrate reductases and constitute major defenses against oxidative stress. In this study, we cloned from the helminth parasite Echinococcus granulosus two trans-spliced mRNA variants that encode thioredoxin glutathione reductases (TGR). These variants code for mitochondrial and cytosolic selenocysteine-containing isoforms that possess identical glutaredoxin (Grx) and thioredoxin reductase (TR) domains and differ exclusively in their N termini. Western blot analysis of subcellular fractions with specific anti-TGR antibodies showed that TGR is present in both compartments. The biochemical characterization of the native purified TGR suggests that the Grx and TR domains of the enzyme can function either coupled or independently of each other, because the Grx domain can accept electrons from either TR domains or the glutathione system and the TR domains can transfer electrons to either the fused Grx domain or to E. granulosus thioredoxin.


Asunto(s)
Empalme Alternativo , Echinococcus/genética , Mitocondrias/enzimología , Complejos Multienzimáticos/genética , NADH NADPH Oxidorreductasas/genética , ARN Mensajero/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Citosol/enzimología , Cartilla de ADN , ADN Complementario/química , ADN Complementario/genética , Echinococcus/química , Echinococcus/enzimología , Exones , Variación Genética , Humanos , Cinética , Ratones , Datos de Secuencia Molecular , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , NADH NADPH Oxidorreductasas/química , NADH NADPH Oxidorreductasas/metabolismo , Conformación de Ácido Nucleico , Reacción en Cadena de la Polimerasa , ARN de Helminto/química , ARN de Helminto/genética , ARN Mensajero/química , Ratas , Alineación de Secuencia , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA