Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immun Ageing ; 21(1): 21, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38515147

RESUMEN

BACKGROUND: Advancing age is a major risk factor for respiratory viral infections. The infections are often prolonged and difficult to resolve resulting hospitalizations and mortality. The recent COVID-19 pandemic has highlighted this as elderly subjects have emerged as vulnerable populations that display increased susceptibility and severity to SARS-CoV-2. There is an urgent need to identify the probable mechanisms underlying this to protect against future outbreaks of such nature. Innate immunity is the first line of defense against viruses and its decline impacts downstream immune responses. This is because dendritic cells (DCs) and macrophages are key cellular elements of the innate immune system that can sense and respond to viruses by producing inflammatory mediators and priming CD4 and CD8 T-cell responses. RESULTS: We investigated the changes in innate immune responses to SARS-CoV-2 as a function of age. Our results using human PBMCs from aged, middle-aged, and young subjects indicate that the activation of DCs and monocytes in response to SARS-CoV-2 is compromised with age. The impairment is most apparent in pDCs where both aged and middle-aged display reduced responses. The secretion of IL-29 that confers protection against respiratory viruses is also decreased in both aged and middle-aged subjects. In contrast, inflammatory mediators associated with severe COVID-19 including CXCL-8, TREM-1 are increased with age. This is also apparent in the gene expression data where pathways related host defense display an age dependent decrease with a concomitant increase in inflammatory pathways. Not only are the inflammatory pathways and mediators increased after stimulation with SARS-CoV-2 but also at homeostasis. In keeping with reduced DC activation, the induction of cytotoxic CD8 T cells is also impaired in aged subjects. However, the CD8 T cells from aged subjects display increased baseline activation in accordance with the enhanced baseline inflammation. CONCLUSIONS: Our results demonstrate a decline in protective anti-viral immune responses and increase in damaging inflammatory responses with age indicating that dysregulated innate immune responses play a significant role in the increased susceptibility of aged subjects to COVID-19. Furthermore, the dysregulation in immune responses develops early on as middle-aged demonstrate several of these changes.

2.
Cell Mol Life Sci ; 79(6): 331, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35648273

RESUMEN

Alzheimer's disease (AD) is associated with dysregulated immune and inflammatory responses. Emerging evidence indicates that peripheral immune activation is linked to neuroinflammation and AD pathogenesis. The present study focuses on determining the role of IL-21 in the pathogenesis of AD using human samples and the 5xFAD mice model. We find that the levels of IL-21 are increased in the periphery of both humans and mice in AD. In addition, the proportions of IL-21 target cells, Tfh and B plasma cells as well as activation of monocytes is increased in PBMCs from AD and mild cognitively impaired (MCI) subjects as compared to age-matched controls, indicating immune activation. In contrast, the percentage of B1 cells that control inflammation is decreased. These changes are due to IL-21 as the expression of IL-21 receptor (IL-21R) is higher on all these cells in AD. Furthermore, treatment with recombinant IL-21 in AD mice also leads to similar alterations in Tfh, B, B1, and macrophages. The effect of IL-21 is not confined to the periphery since increased expression of IL-21R is also observed in both humans and mice hippocampus derived from the AD brains. In addition, mice injected with IL-21 display increased deposition of amyloid beta (Aß) plaques in the brain which is reduced following anti-IL-21R antibody that blocks the IL-21 signaling. Moreover, activation of microglia was enhanced in IL-21-injected mice. In keeping with enhanced microglial activation, we also observed increased production of pro-inflammatory cytokines, IL-18 and IL-6 in IL-21-injected mice. The microglial activation and cytokines were both inhibited following IL-21R blockage. Altogether, IL-21 escalates AD pathology by enhancing peripheral and brain immune and inflammatory responses leading to increased Aß plaque deposition. IL-21 impacts AD neuropathology by enhancing peripheral and neuronal immune activation, inflammation, and Aß plaque deposition. Increased levels of IL-21 in the circulation of AD and MCI subjects enhances the proportions of Tfh and B plasma cells indicative of peripheral immune activation. On the other hand, the proportions of B1 cells that help reduce inflammation and clear Aß are reduced. In addition to the periphery, IL-21 also acts on the brain via IL-21 receptor, IL-21R that displays increased expression in the hippocampi of AD and MCI subjects. IL-21 enhances the activation of microglia, induces the secretion of pro-inflammatory cytokines and deposition of Aß plaques in the brain in AD.


Asunto(s)
Enfermedad de Alzheimer , Interleucinas , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/metabolismo , Citocinas/metabolismo , Humanos , Inflamación/metabolismo , Interleucinas/metabolismo , Ratones , Ratones Transgénicos , Placa Amiloide/metabolismo , Receptores de Interleucina-21/metabolismo
3.
J Clin Immunol ; 42(5): 914-922, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35366743

RESUMEN

PURPOSE: CD8 cytotoxic T cells (CTLs) play a critical role in the clearance of virally infected cells. SARS-CoV-2-specific CD8 T cells and functional CTLs in natural infections and following COVID-19 vaccine in primary antibody deficiency (PAD) have not been reported. In this study, we evaluated T cell response following COVID-19 or COVID-19 mRNA vaccination in patients with PADs by assessing SARS-CoV-2 tetramer-positive CD8 T cells and functional CTLs. METHODS: SARS-CoV-2-specific CD8 and functional CTLs were examined in a patient with X-linked agammaglobulinemia (XLA) and a patient with common variable immunodeficiency (CVID) following COVID-19 infection, and in 5 patients with CVID and 5 healthy controls 1 month following 2nd dose of COVID-19 mRNA vaccine (Pfizer-BioNTech). Cells were stained with SARS-CoV-2 spike protein-specific tetramers, and for functional CTLs (CD8+ CD107a+ granzyme B+ perforin+), with monoclonal antibodies and isotype controls and analyzed by flow cytometry. RESULTS: SARS-CoV-2-specific tetramer + CD8 T cells and functional CTLs in the patient with XLA following COVID-19 infection were higher, as compared to healthy control subject following COVID-19 infection. On the other hand, SARS-CoV2-tetramer + CD8 T cells and functional CTLs were lower in CVID patient following COVID19 infection as compared to healthy control following COVID-19 infection. SARS-CoV2-tetramer + CD8 T cells and functional CTLs were significantly lower in SARS-CoV2-naive CVID patients (n = 10) following vaccination when compared to SARS-CoV-2-naive healthy vaccinated controls (n = 10). CONCLUSIONS: CVID is associated with reduced SARS-CoV-2-specific CD8 T cells and functional CTLs in both natural SARS-CoV-2 infection and in response to SARS-CoV-2 mRNA vaccine, whereas natural infection in XLA is associated with a robust SARS-CoV-2-specific CD8 and functional CTL responses.


Asunto(s)
Linfocitos T CD8-positivos , Vacunas contra la COVID-19 , COVID-19 , Enfermedades de Inmunodeficiencia Primaria , Anticuerpos Antivirales , Vacuna BNT162 , Linfocitos T CD8-positivos/inmunología , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , Humanos , Memoria Inmunológica , Enfermedades de Inmunodeficiencia Primaria/inmunología , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus
4.
Int Arch Allergy Immunol ; 183(3): 350-359, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34794147

RESUMEN

INTRODUCTION: In the trials of corona virus vaccines, detailed analyses of subsets of lymphocytes were not carried out. We present perhaps the most comprehensive immunological analysis of 29 subsets of B and T cells in 2 healthy subjects receiving 2 doses of the Pfizer SARS-CoV-2 (COVID-19) vaccine. METHODS: Analyses were performed prior to vaccination, 3 weeks following the 1st dose, and 4 weeks following the 2nd dose. Total, naïve (TN), and different memory and effector subsets (TCM, TEM, and TEMRA) of CD4+ and CD8+ T cells; SARS-CoV-2 spike protein-specific tetramer+, and cytotoxic CD8+ T; subsets of T follicular cells (TFH, TFH1, TFH2, TFH1/TFH17, and TFH17); B-cell subsets (mature B cells, naive B cells, transitional B cells, marginal zone B cells, class-switched memory B cells, germinal center B cells, and CD21low B cells), and plasmablasts; and regulatory lymphocytes (CD4+ Treg, CD8+ Treg, Breg, and TFR cells) were evaluated with specific monoclonal antibodies by flow cytometry. RESULTS: A lack of COVID-19 IgG antibodies after the 1st dose in one of 2 subjects was associated with increased regulatory lymphocytes and decreased plasmablasts. Seroconversion after the 2nd dose in this subject was associated with decreased TFR cells and increased plasmablasts. In both subjects, CD4 TEM and CD8 TCM were markedly increased following the 2nd dose. TFH1 and regulatory lymphocytes were increased (except Breg) following the 1st dose. A striking increase in SARS-CoV-2-specific CD8+ T cells was observed following the 2nd dose. CONCLUSION: Our data support the need for 2nd dose of vaccine to induce strong SARS-CoV-2 CD8 T-cell specific response and generation of memory subsets of CD4+ and CD8+ T cells. Regulatory lymphocytes appear to play a role in the magnitude of response.


Asunto(s)
Anticuerpos Antivirales/sangre , Vacuna BNT162/inmunología , COVID-19/prevención & control , SARS-CoV-2/inmunología , Vacunación , Anciano , Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Humanos , Inmunoglobulina G/sangre , Masculino , Persona de Mediana Edad , Linfocitos T Reguladores/inmunología
5.
Int Arch Allergy Immunol ; 182(3): 195-209, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33486489

RESUMEN

We report perhaps the most comprehensive study of subsets of CD4+ and CD8+ and subsets of B cells in a mild symptomatic SARS-CoV-2+ immunocompetent patient and a common variable immunodeficiency disease (CVID) patient who had normal absolute lymphocyte counts and remained negative for SARS-CoV-2 IgG antibodies. Naïve (TN), central memory (TCM), effector memory (TEM), and terminally differentiated effector memory (TEMRA) subsets of CD4+ and CD8+ T cells, subsets of T follicular helper cells (cTFH, TFH1, TFH2, TFH17, TFH1/TFH17, and TFR), CD4 Treg, CD8 Treg, mature B cells, transitional B cells, marginal zone B cells, germinal center (GC) B cells, CD21low B cells, antibody-secreting cells (plasmablasts), and Breg cells were examined in patients and age-matched controls with appropriate monoclonal antibodies and isotype controls using multicolor flow cytometry. Different patterns of abnormalities (often contrasting) were observed in the subsets of CD4+ T, CD8+ T, B-cell subsets, and regulatory lymphocytes among the immunocompetent patient and CVID patient as compared to corresponding healthy controls. Furthermore, when data were analyzed between the 2 patients, the immunocompetent patient demonstrated greater changes in various subsets as compared to the CVID patient. These data demonstrate different immunological responses to SARS-CoV-2 infection in an immunocompetent patient and the CVID patient. A marked decrease in GC B cells and plasmablasts may be responsible for failure to make SARS-CoV-2 antibodies. The lack of SARS-CoV-2 antibodies with mild clinical disease suggests an important role of T-cell response in defense against SARS-CoV-2 infection.


Asunto(s)
COVID-19/inmunología , Inmunodeficiencia Variable Común/inmunología , SARS-CoV-2/inmunología , Subgrupos de Linfocitos T/inmunología , Adulto , Subgrupos de Linfocitos B/inmunología , Femenino , Humanos , Inmunocompetencia , Masculino , Persona de Mediana Edad
6.
Int Arch Allergy Immunol ; 181(6): 476-480, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32248193

RESUMEN

BACKGROUND: CD8+ regulatory T cells (CD8+ Tregs) are relatively recently described T cell subsets that have been shown to regulate various T cell responses and appear to play a role in autoimmunity. However, their effects on B cells have not been explored. OBJECTIVES: In this investigation we examine the effect of CD8+ Tregs on various subsets of peripheral B cells include naïve B cells, transitional B cells, marginal zone B cells, IgM memory B cells, class switched memory B cells, and plasmablasts, and on the expression of B cell-activating factor receptor (BAFF-R). METHODS: CD8+ T cells were first purified and then activated with anti-CD3/CD28 beads to generate CD8+ Tregs. Purified CD19+ B cells were cultured alone or with sorted CD8+ Tregs (CD8+CD183+CCR7+CD45RA-) and activated with anti-CD40 monoclonal antibody and CpG. B cell subsets and the expression of BAFF-R on naïve and memory B cells were analyzed using various monoclonal antibodies and corresponding control isotypes. Ten thousand cells were acquired and analyzed by FACSCalibur using the FlowJo software. RESULTS: CD8+ Tregs selectively and significantly suppressed plasmablasts without any significant effect on other B cell subsets or on the expression of BAFF-R. CONCLUSION: CD8+ Tregs may play a role in autoimmunity by regulating antibody production via suppression of plasmablasts.


Asunto(s)
Autoinmunidad/inmunología , Subgrupos de Linfocitos B/inmunología , Linfocitos T CD8-positivos/inmunología , Linfocitos T Reguladores/inmunología , Células Cultivadas , Humanos
7.
Int Arch Allergy Immunol ; 181(12): 947-955, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32799212

RESUMEN

AIM: The role of CD4+ Treg in immune responses has been well established. More recently, a role of CD8+ T regulatory cells (CD8 Treg) in the regulation of immune responses in health and autoimmune diseases has been investigated. Furthermore, different investigators have used different markers to define CD8 Treg. Finally, regulatory effects of CD8 Treg have been studied against T-cell responses; however, their role in regulating B-cell proliferation and immunoglobulin production has not been evaluated. Therefore, in this study we examined the effect of two types of CD8 Treg on B-cell proliferation and immunoglobulin production. METHODS: Purified CD8+ T cells were activated with anti-CD3/CD28 for 48 h and then sorted into two different types of CD8 Treg as defined by two different sets of markers, CD8+CD183+CD197+CD45RA- and CD8+CD183+CD25highCD278+. Purified B cells were cocultured with sorted CD8 Treg at 1:1, 1:1/2, and 1:1/4 ratios and activated with anti-CD40 and CpG. B-cell proliferation was assessed by the CFSE dye dilution assay and immunoglobulin production by the ELISA assay. RESULTS: Our data show CD183+CD197+CD45RA-CD8 Treg significantly inhibited B-cell proliferation and inhibited IgM and IgG production but not IgA production at 1:1 ratio only. However, CD183+CD25highCD278+CD8 Treg inhibited significantly B-cell proliferation at 1:1 and 1:1/2 ratios and IgM, IgG, and IgA production at all ratios. CONCLUSION: CD8 Treg regulate B-cell responses, and CD183+CD25highCD278+CD8 Treg are more powerful regulators of B-cell proliferation and immunoglobulin production than CD183+CD197+CD45RA-CD8 Treg and, therefore, may be used as preferred markers for CD8 Treg.


Asunto(s)
Linfocitos B/inmunología , Linfocitos T CD8-positivos/inmunología , Subgrupos de Linfocitos T/inmunología , Adulto , Formación de Anticuerpos , Proliferación Celular , Células Cultivadas , Islas de CpG/inmunología , Femenino , Humanos , Inmunoglobulinas/metabolismo , Activación de Linfocitos , Masculino , Persona de Mediana Edad , Adulto Joven
8.
J Immunol ; 200(8): 2563-2570, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29531163

RESUMEN

Biotin (vitamin B7) is essential for human health because of its involvement, as a cofactor, in a variety of critical cellular metabolic reactions. Previous studies have shown that biotin deficiency enhances inflammation, and certain chronic inflammatory diseases are associated with biotin deficiency; however, the mechanisms that mediate the association between biotin status and inflammation are not well understood. In this study, we examined the effect of biotin deficiency on human CD4+ T cell responses to determine their role in biotin deficiency-associated inflammation. Our investigations revealed that anti-CD3/CD28-stimulated CD4+ T cells cultured in biotin-deficient medium secreted significantly enhanced levels of the proinflammatory cytokines IFN-γ, TNF, and IL-17. Expression of the transcription factors T-bet and RORγt was increased, whereas Foxp3 expression was decreased, in biotin-deficient CD4+ T cells. The percentage of T regulatory cells was also decreased under biotin-deficient condition. A similar increase in T-bet, RORγt, and proinflammatory cytokine levels, as well as a decrease in Foxp3, was observed in inguinal lymph nodes of mice fed a biotin-deficient diet relative to pair-fed controls. Furthermore, differentiation of CD4+ T cells toward Th1 and Th17 cells was also enhanced. In vitro and in vivo investigations indicated that the increased inflammatory response was due to enhanced activation of the mammalian target of rapamycin signaling pathway in biotin-deficient CD4+ T cells. In summary, these results demonstrate that biotin deficiency enhances the inflammatory responses in CD4+ T cells, which may contribute to inflammation associated with biotin deficiency.

9.
Mediators Inflamm ; 2020: 6705428, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32189996

RESUMEN

Smoking is a major risk factor for pulmonary diseases that include chronic obstructive pulmonary diseases (COPD) and cancer. Nicotine is the toxic and addictive component of tobacco products, like cigarettes, that negatively affects the immune system. Here, we examined the effect of nicotine on the IL-22 pathway that protects lung function by increasing transepithelial resistance and epithelial cell regeneration and repair. Our results indicate that exposure to nicotine impairs the regenerative capacity of primary bronchial epithelial cells in scratch assays. IL-22 at 100 ng/ml significantly improved wound healing in epithelial cells; however, the exposure to nicotine hampered the IL-22-mediated effect of wound healing. Investigation into the mechanisms showed that IL-22 receptor, IL-22Rα1, was downregulated in the presence of nicotine as determined by q-PCR and flow cytometry. We also investigated the effect of nicotine on IL-22 production by T cells. Results indicate that nicotine inhibited the secretion of IL-22 from T cells in response to aryl hydrocarbon receptor (AHR) ligand, FICZ. Altogether, the data suggests that nicotine negatively influences the IL-22-IL-22R axis. This impairment may contribute to the nicotine-mediated detrimental effects on lung function.


Asunto(s)
Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Interleucinas/farmacología , Nicotina/farmacología , Femenino , Citometría de Flujo , Humanos , Masculino , Receptores de Hidrocarburo de Aril/metabolismo , Interleucina-22
10.
Int Arch Allergy Immunol ; 180(2): 150-158, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31284281

RESUMEN

INTRODUCTION: Regulatory lymphocytes (CD4+ T regulatory cells [Treg], CD8+ Treg, and B regulatory cells [Breg]) play a critical role in immune homeostasis and tolerance. Common variable immunodeficiency (CVID) is associated with increased susceptibility to infections and increased frequency of inflammatory and autoimmune diseases. CD4+ Treg cell abnormalities have been reported in CVID; however, CD8+ Treg cells have not been reported in CVID. The objective of this study was to evaluate CD4+ Treg and CD8+ Treg cells in CVID patients. METHODS: In 25 patients with CVID and age-matched healthy controls, Treg cells, evaluated in freshly isolated peripheral blood mononuclear cells (natural; nCD4+ Treg and nCD8+ Treg) and following in vitro activation with anti-CD3/CD28 monoclonal antibodies (induced; iCD4+ Treg and iCD8+ Treg) as well as Breg cells were analyzed with specific monoclonal antibodies and isotype controls using flow cytometry. RESULTS: The proportions of nCD4+ Treg (CD4+ CD127low CD25high FoxP3+), iCD4+ Treg (CD4+ CD127low CD25high FoxP3+), iCD8+ Treg (CD8+ CD25high CD183+ FoxP3+), and Breg (CD19+ CD24high CD38high) lymphocytes were significantly lower in patients with CVID than in controls. CONCLUSIONS: Altered regulatory lymphocytes may play a role in the pathogenesis and autoimmunity and inflammation associated with CVID.


Asunto(s)
Linfocitos B Reguladores/inmunología , Linfocitos T CD8-positivos/inmunología , Inmunodeficiencia Variable Común/inmunología , Linfocitos T Reguladores/inmunología , Adolescente , Adulto , Anciano , Envejecimiento/inmunología , Autoinmunidad/inmunología , Femenino , Humanos , Inflamación/inmunología , Activación de Linfocitos/inmunología , Recuento de Linfocitos , Masculino , Persona de Mediana Edad , Adulto Joven
11.
Immun Ageing ; 15: 2, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29387134

RESUMEN

BACKGROUND: Progressive T cell decline in aged humans is associated with a deficiency of naïve (TN) and central memory (TCM) T cells. We have previously reported increased Tumor necrosis factor-α (TNF-α)-induced apoptosis in TN and TCM T cells in aged humans; however, the molecular basis of increased apoptosis remains to be defined. Since expression of TNF receptors (TNFRs) was reported to be comparable in young and aged, we investigated signaling events downstream of TNFRs to understand the molecular basis of increased TNF-α-induced apoptosis in aged TN and TCM CD8+ cells. RESULTS: The expression of TRAF-2 and RIP, phosphorylation of JNK, IKKα/ß, and IκBα, and activation of NF-κB activation were significantly decreased in TN and TCM CD8+ cells from aged subjects as compared to young controls. Furthermore, expression of A20, Bcl-xL, cIAP1, and FLIP-L and FLIP-S was significantly decreased in TN and TCM CD8+ cells from aged subjects. CONCLUSIONS: These data demonstrate that an impaired expression/function of molecules downstream TNFR signaling pathway that confer survival signals contribute to increased apoptosis of TN and TCM CD8+ cells in aged humans.

12.
Am J Physiol Cell Physiol ; 311(3): C386-91, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27413170

RESUMEN

The water-soluble biotin (vitamin B7) is indispensable for normal human health. The vitamin acts as a cofactor for five carboxylases that are critical for fatty acid, glucose, and amino acid metabolism. Biotin deficiency is associated with various diseases, and mice deficient in this vitamin display enhanced inflammation. Previous studies have shown that biotin affects the functions of adaptive immune T and NK cells, but its effect(s) on innate immune cells is not known. Because of that and because vitamins such as vitamins A and D have a profound effect on dendritic cell (DC) function, we investigated the effect of biotin levels on the functions of human monocyte-derived DCs. Culture of DCs in a biotin-deficient medium (BDM) and subsequent activation with LPS resulted in enhanced secretion of the proinflammatory cytokines TNF-α, IL-12p40, IL-23, and IL-1ß compared with LPS-activated DCs cultured in biotin-sufficient (control) and biotin-oversupplemented media. Furthermore, LPS-activated DCs cultured in BDM displayed a significantly higher induction of IFN-γ and IL-17 indicating Th1/Th17 bias in T cells compared with cells maintained in biotin control or biotin-oversupplemented media. Investigations into the mechanisms suggested that impaired activation of AMP kinase in DCs cultured in BDM may be responsible for the observed increase in inflammatory responses. In summary, these results demonstrate for the first time that biotin deficiency enhances the inflammatory responses of DCs. This may therefore be one of the mechanism(s) that mediates the observed inflammation that occurs in biotin deficiency.


Asunto(s)
Biotina/metabolismo , Deficiencia de Biotinidasa/patología , Células Dendríticas/patología , Inflamación/patología , Lipopolisacáridos/farmacología , Deficiencia de Biotinidasa/metabolismo , Células Dendríticas/metabolismo , Humanos , Inflamación/metabolismo , Interferón gamma/metabolismo , Subunidad p40 de la Interleucina-12/metabolismo , Interleucina-1beta/metabolismo , Interleucina-23/metabolismo , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/fisiología , Monocitos/metabolismo , Monocitos/patología , Células TH1/efectos de los fármacos , Células TH1/metabolismo , Células TH1/patología , Células Th17/efectos de los fármacos , Células Th17/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
13.
Int J Immunopathol Pharmacol ; 28(4): 488-96, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26384392

RESUMEN

Lactobacilli have been widely studied for their probiotic effects and have been reported to function as antiviral and anticancer agents. However, the underlying mechanisms via immune modulation are poorly understood. PFT is a freeze dried compound of Lactobacillus kefiri P-IF with a unique composition and functionality. In this study, we examined the potential stimulatory effects of two concentrations (50 µg and 100 µg/mL) of PFT on human monocyte-derived dendritic cell (DC) function in vitro. Results showed that PFT upregulated the expression of DC surface co-stimulatory and maturation markers CD80, CD86, and HLADR in a concentration dependent manner. PFT at 100 µg/mL markedly increased the secretion of IL-6, IL-10, TNF-α, and IL-1ß by DCs. This concentration of PFT also stimulated the production of antiviral cytokines, IFN-α and IFN-λ(IL29) in DCs. Additionally, PFT at 100 µg/mL activated moDCs prime CD4(+)T cells and significantly increased the levels of IL-10, IFN-γ, and TNF-α by 1.7, four, three-fold, respectively. Furthermore PFT-stimulated DCs were also effective in enhancing the cytotoxic potential of CD8(+)T cells via the induction of Granzyme-B and upregulation of CD107a, and CD103 expression, a marker of resident/regulatory CD8(+)T cells. These data suggest that PFT functions as a natural adjuvant for DC activation and thus may be used in DC-based vaccine strategies against viral infections and cancer.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Células Dendríticas/efectos de los fármacos , Lactobacillus , Probióticos/farmacología , Antígenos CD/análisis , Citocinas/metabolismo , Células Dendríticas/inmunología , Humanos , Cadenas alfa de Integrinas/análisis , Proteína 1 de la Membrana Asociada a los Lisosomas/análisis
14.
Mediators Inflamm ; 2014: 436438, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25253920

RESUMEN

Chlamydophila pneumoniae (CPn) is a common respiratory pathogen that causes a chronic and persistent airway infection. The elderly display an increased susceptibility and severity to this infection. However, the underlying mechanisms are not well understood. Dendritic cells (DCs) are the initiators and regulators of immune responses. Therefore, we investigated the role of DCs in the age-associated increased CPn infection in vitro in humans. Though the expression of activation markers was comparable between the two age groups, DCs from aged subjects secreted enhanced levels of proinflammatory mediators such as TNF-α and CXCL-10 in response to CPn. In contrast, the secretion of IL-10 and innate interferons, IFN-α and IFN-λ, was severely impaired in DCs from aged donors. The increased activation of DCs from aged subjects to CPn also resulted in enhanced proliferation of CD4 and CD8 T cells in a DC-T coculture. Furthermore, T cells primed with CPn-stimulated DCs from aged subjects secreted increased levels of IFN-γ and reduced levels of IL-10 compared to DCs obtained from young subjects. In summary, DCs from the elderly displayed enhanced inflammatory response to CPn which may result in airway remodeling and increase the susceptibility of the elderly to respiratory diseases such as asthma.


Asunto(s)
Chlamydophila pneumoniae/inmunología , Células Dendríticas/metabolismo , Inflamación/inmunología , Inflamación/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Proliferación Celular/fisiología , Células Cultivadas , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
15.
Nutrients ; 16(6)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38542792

RESUMEN

Corona Virus Disease 19 (COVID-19) has been a major pandemic impacting a huge population worldwide, and it continues to present serious health threats, necessitating the development of novel protective nutraceuticals. Biobran/MGN-3, an arabinoxylan rice bran, is a potent immunomodulator for both humans and animals that has recently been demonstrated to protect against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro. We here investigate Biobran/MGN-3's potential to enhance an antiviral immune response in humans. Peripheral blood mononuclear cells (PBMCs) derived from eight subjects taking Biobran/MGN-3 (age 55-65 years) and eight age-matched control subjects were stimulated with irradiated SARS-CoV-2 virus and then subjected to immuno-phenotyping and multiplex cytokine/chemokine assays. Results showed that PBMCs from subjects supplemented with Biobran/MGN-3 had significantly increased activation of plasmacytoid dendritic cells (pDCs) coupled with increased IFN-α secretion. We also observed higher baseline expression of HLA-DR (human leukocyte antigen-DR isotype) on dendritic cells (DCs) and increased secretion of chemokines and cytokines, as well as a substantial increase in cytotoxic T cell generation for subjects taking Biobran/MGN-3. Our results suggest that Biobran/MGN-3 primes immunity and therefore may be used for boosting immune responses against SARS-CoV-2 infections and other diseases, particularly in high-risk populations such as the elderly.


Asunto(s)
COVID-19 , Oryza , Xilanos , Animales , Humanos , Anciano , Persona de Mediana Edad , Oryza/metabolismo , Leucocitos Mononucleares/metabolismo , Citocinas/metabolismo
16.
Pathogens ; 13(6)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38921811

RESUMEN

Since the start of the COVID-19 pandemic, in a short span of 3 years, vaccination against SARS-CoV-2 has resulted in the end of the pandemic. Patients with inborn errors of immunity (IEI) are at an increased risk for SARS-CoV-2 infection; however, serious illnesses and mortality, especially in primary antibody deficiencies (PADs), have been lower than expected and lower than other high-risk groups. This suggests that PAD patients may mount a reasonable effective response to the SARS-CoV-2 vaccine. Several studies have been published regarding antibody responses, with contradictory reports. The current study is, perhaps, the most comprehensive study of phenotypically defined various lymphocyte populations in PAD patients following the SARS-CoV-2 vaccine. In this study, we examined, following two vaccinations and, in a few cases, prior to and following the 1st and 2nd vaccinations, subsets of CD4 and CD8 T cells (Naïve, TCM, TEM, TEMRA), T follicular helper cells (TFH1, TFH2, TFH17, TFH1/17), B cells (naïve, transitional, marginal zone, germinal center, IgM memory, switched memory, plasmablasts, CD21low), regulatory lymphocytes (CD4Treg, CD8Treg, TFR, Breg), and SARS-CoV-2-specific activation of CD4 T cells and CD8 T cells (CD69, CD137), SARS-CoV-2 tetramer-positive CD8 T cells, and CD8 CTL. Our data show significant alterations in various B cell subsets including Breg, whereas only a few subsets of various T cells revealed alterations. These data suggest that large proportions of PAD patients may mount significant responses to the vaccine.

17.
Immun Ageing ; 10(1): 3, 2013 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-23343052

RESUMEN

Aging is associated chronic inflammation and autoimmunity, and increased levels of leptin. Increased levels of leptin are associated with inflammation and autoimmunity. We have recently reported that leptin activates B cells to induce secretion of proinflammatory and anti-inflammatory cytokines. Role of B cells and leptin in inflammation associated with aging has not been explored. In this study we demonstrate that leptin activates and induces significantly greater amount of IL-6, TNF-α, and IL-10 by B cells from aged humans as compared to young controls. This is associated with increased leptin-induced phosphorylation of STAT3 (signal transducer and activator of transcription-3) in B cells from aged humans as compared to young subjects. These data suggest that leptin-induced B cell-derived proinflammatory cytokines may play a role in chronic inflammation associated with human aging.

18.
Adv Healthc Mater ; 12(12): e2203163, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36645182

RESUMEN

In this study, efficient T cell activation is demonstrated using cell-sized artificial antigen-presenting cells (aAPCs) with protein-conjugated bilayer lipid membranes that mimic biological cell membranes. The highly uniform aAPCs are generated by a facile method based on standard droplet microfluidic devices. These aAPCs are able to activate the T cells in peripheral blood mononuclear cells, showing a 28-fold increase in interferon gamma (IFNγ) secretion, a 233-fold increase in antigen-specific CD8 T cells expansion, and a 16-fold increase of CD4 T cell expansion. The aAPCs do not require repetitive boosting or additional stimulants and can function at a relatively low aAPC-to-T cell ratio (1:17). The research presents strong evidence that the surface fluidity and size of the aAPCs are critical to the effective formation of immune synapses essential for T cell activation. The findings demonstrate that the microfluidic-generated aAPCs can be instrumental in investigating the physiological conditions and mechanisms for T cell activation. Finally, this method demonstrates the feasibility of customizable aAPCs for a cost-effective off-the-shelf approach to immunotherapy.


Asunto(s)
Células Presentadoras de Antígenos , Leucocitos Mononucleares , Activación de Linfocitos , Inmunoterapia/métodos , Lípidos
19.
J Neuroimmunol ; 366: 577843, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35299077

RESUMEN

The disruption of methionine (L-MET) metabolism has been linked with neurodevelopmental disorders such as autism and schizophrenia and neurodegenerative disorders such as Alzheimer's disorder. We previously showed that repeated administration to adult mice of methionine produced impairments of cognitive deficits. Considering the decreased neurogenesis and increased molecular inflammation hypotheses of cognitive deficits in Alzheimer's, we aimed to explore whether the methionine regimen that produced cognitive deficits is associated with altered neuroinflammation, neurogenesis, or neurodegeneration. We found that repeated administration of L-MET at a dose equivalent to two-fold of daily dietary intake for seven days enhanced the activation of microglia and inflammation in the brain, and decreased neurogenesis in the hippocampus without affecting degeneration. Furthermore, sub-chronic and chronic L-MET treatment of human neuroblastoma (SH-SY5Y) inhibited cell cycle progression, an effect that was reversed by decreasing removing L-MET from the medium. These results support a role for neuroinflammation and neurogenesis in mediating the mechanism through which L-MET induces cognitive deficits. The results also uncover L-MET restriction, neuroinflammation, and neurogenesis as potential preventive and/or therapeutic targets for mental disorders associated with cognitive disorders, including schizophrenia and Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Animales , Hipocampo , Humanos , Inflamación , Metionina , Ratones , Microglía/metabolismo , Neurogénesis , Enfermedades Neuroinflamatorias
20.
Life Sci ; 302: 120659, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35623392

RESUMEN

Macrophages play a role in preventing inflammation in the respiratory tract. To investigate the mechanisms that lead to tolerance in macrophages, we examined the crosstalk between airway epithelial cells (AECs) and macrophages using a 2D coculture model. Culture of macrophages with AECs led to a significant inhibition of LPS induced pro-inflammatory responses. More importantly, AECs induced the secretion of TGF-ß and IL-10 from macrophages even in the absence of LPS stimulation. In addition, the expression of inhibitory molecule, CD200R was also upregulated on AEC exposed macrophages. Furthermore, the AECs exposed macrophages induced significantly increased level of T regulatory cells. Investigation into the possible mechanisms indicated that a combination of growth factor, G-CSF, and metabolites, Kynurenine and lactic acid produced by AECs is responsible for inducing tolerance in macrophages. Interestingly, all these molecules had differential effect on macrophages with G-CSF inducing TGF-ß, Kynurenine elevating IL-10, and lactic acid upregulating CD200R. Furthermore, a cocktail of these factors/metabolites induced similar changes in macrophages as AEC exposure. Altogether, these data identify factors secreted by AECs that enhance tolerance in the respiratory tract. These mediators thus have the potential to be used for therapeutic purposes to modulate respiratory inflammation following local viral infections and lung diseases.


Asunto(s)
Interleucina-10 , Lipopolisacáridos , Humanos , Interleucina-10/metabolismo , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Quinurenina/metabolismo , Células Epiteliales/metabolismo , Macrófagos , Mucosa Respiratoria/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Inflamación/metabolismo , Factor Estimulante de Colonias de Granulocitos/metabolismo , Ácido Láctico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA