Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38542362

RESUMEN

Indole alkaloids are the main bioactive molecules of the Gelsemium genus plants. Diverse reports have shown the beneficial actions of Gelsemium alkaloids on the pathological states of the central nervous system (CNS). Nevertheless, Gelsemium alkaloids are toxic for mammals. To date, the molecular targets underlying the biological actions of Gelsemium alkaloids at the CNS remain poorly defined. Functional studies have determined that gelsemine is a modulator of glycine receptors (GlyRs) and GABAA receptors (GABAARs), which are ligand-gated ion channels of the CNS. The molecular and physicochemical determinants involved in the interactions between Gelsemium alkaloids and these channels are still undefined. We used electrophysiological recordings and bioinformatic approaches to determine the pharmacological profile and the molecular interactions between koumine, gelsemine, gelsevirine, and humantenmine and these ion channels. GlyRs composed of α1 subunits were inhibited by koumine and gelsevirine (IC50 of 31.5 ± 1.7 and 40.6 ± 8.2 µM, respectively), while humantenmine did not display any detectable activity. The examination of GlyRs composed of α2 and α3 subunits showed similar results. Likewise, GABAARs were inhibited by koumine and were insensitive to humantenmine. Further assays with chimeric and mutated GlyRs showed that the extracellular domain and residues within the orthosteric site were critical for the alkaloid effects, while the pharmacophore modeling revealed the physicochemical features of the alkaloids for the functional modulation. Our study provides novel information about the molecular determinants and functional actions of four major Gelsemium indole alkaloids on inhibitory receptors, expanding our knowledge regarding the interaction of these types of compounds with protein targets of the CNS.


Asunto(s)
Alcaloides , Gelsemium , Animales , Gelsemium/química , Alcaloides/química , Extractos Vegetales/química , Alcaloides Indólicos/química , Ácido gamma-Aminobutírico , Mamíferos/metabolismo
2.
Int J Mol Sci ; 22(24)2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34948050

RESUMEN

α-Synuclein (αSyn) species can be detected in synaptic boutons, where they play a crucial role in the pathogenesis of Parkinson's Disease (PD). However, the effects of intracellular αSyn species on synaptic transmission have not been thoroughly studied. Here, using patch-clamp recordings in hippocampal neurons, we report that αSyn oligomers (αSynO), intracellularly delivered through the patch electrode, produced a fast and potent effect on synaptic transmission, causing a substantial increase in the frequency, amplitude and transferred charge of spontaneous synaptic currents. We also found an increase in the frequency of miniature synaptic currents, suggesting an effect located at the presynaptic site of the synapsis. Furthermore, our in silico approximation using docking analysis and molecular dynamics simulations showed an interaction between a previously described small anti-amyloid beta (Aß) molecule, termed M30 (2-octahydroisoquinolin-2(1H)-ylethanamine), with a central hydrophobic region of αSyn. In line with this finding, our empirical data aimed to obtain oligomerization states with thioflavin T (ThT) and Western blot (WB) indicated that M30 interfered with αSyn aggregation and decreased the formation of higher-molecular-weight species. Furthermore, the effect of αSynO on synaptic physiology was also antagonized by M30, resulting in a decrease in the frequency, amplitude, and charge transferred of synaptic currents. Overall, the present results show an excitatory effect of intracellular αSyn low molecular-weight species, not previously described, that are able to affect synaptic transmission, and the potential of a small neuroactive molecule to interfere with the aggregation process and the synaptic effect of αSyn, suggesting that M30 could be a potential therapeutic strategy for synucleinopathies.


Asunto(s)
Isoquinolinas/farmacología , Neuronas/citología , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Animales , Benzotiazoles/farmacología , Células Cultivadas , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Unión Proteica , Dominios Proteicos , Ratas , Transmisión Sináptica
3.
Neurobiol Dis ; 141: 104938, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32434047

RESUMEN

INTRODUCTION: Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder in elderly people. Existent therapies are directed at alleviating some symptoms, but are not effective in altering the course of the disease. METHODS: Based on our previous study that showed that an Aß-interacting small peptide protected against the toxic effects of amyloid-beta peptide (Aß), we carried out an array of in silico, in vitro, and in vivo assays to identify a molecule having neuroprotective properties. RESULTS: In silico studies showed that the molecule, referred to as M30 (2-Octahydroisoquinolin-2(1H)-ylethanamine), was able to interact with the Aß peptide. Additionally, in vitro assays showed that M30 blocked Aß aggregation, association to the plasma membrane, synaptotoxicity, intracellular calcium, and cellular toxicity, while in vivo experiments demonstrated that M30 induced a neuroprotective effect by decreasing the toxicity of Aß in the dentate gyrus of the hippocampus and improving the alteration in spatial memory in behavior assays. DISCUSSION: Therefore, we propose that this new small molecule could be a useful candidate for the additional development of a treatment against AD since it appears to block multiple steps in the amyloid cascade. Overall, since there are no drugs that effectively block the progression of AD, this approach represents an innovative strategy. SIGNIFICANCE: Currently, there is no effective treatment for AD and the expectations to develop an effective therapy are low. Using in silico, in vitro, and in vivo experiments, we identified a new compound that is able to inhibit Aß-induced neurotoxicity, specifically aggregation, association to neurons, synaptic toxicity, calcium dyshomeostasis and memory impairment induced by Aß. Because Aß toxicity is central to AD progression, the inhibition mediated by this new molecule might be useful as a therapeutic tool.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Fármacos Neuroprotectores/administración & dosificación , Agregación Patológica de Proteínas/prevención & control , Animales , Simulación por Computador , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Simulación del Acoplamiento Molecular , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Células PC12 , Agregación Patológica de Proteínas/metabolismo , Ratas
4.
Addict Biol ; 25(2): e12726, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-30884072

RESUMEN

Here, we used knock-in (KI) mice that have ethanol-insensitive alpha 1 glycine receptors (GlyRs) (KK385/386AA) to examine how alpha 1 GlyRs might affect binge drinking and conditioned place preference. Data show that tonic alpha 1 GlyR-mediated currents were exclusively sensitive to ethanol only in wild-type mice. Behavioral studies showed that the KI mice have a higher intake of ethanol upon first exposure to drinking and greater conditioned place preference to ethanol. This study suggests that nonsynaptic alpha 1-containing GlyRs have a role in motivational and early reinforcing effects of ethanol.


Alcohol abuse leads to great medical, social, and economic burdens throughout the world. It is believed that the rewarding actions of alcohol are mediated by alterations in the mesolimbic dopaminergic system leading to increased levels of dopamine in the nucleus accumbens (NAc). Little is known about the role that ligand-gated ion channels (LGICs), such as glycine receptors (GlyRs), have in regulating levels of ethanol intake and place preference. In this study, we used knock-in (KI) mice that have ethanol-insensitive α1 GlyRs (KK385/386AA) and a combination of electrophysiological and behavioral approaches to examine how expression of ethanol-resistant α1 GlyRs in brain neurons might affect binge drinking and conditioned place preference. Data show that tonic α1 GlyR-mediated currents that modulate accumbal excitability were exclusively sensitive to ethanol only in wild-type (WT) mice. Behavioral studies showed that the KI mice have a higher intake of ethanol upon first exposure to drinking and greater conditioned place preference to ethanol, suggesting that α1 GlyRs in the brain have a protective role against abuse. This study suggests that nonsynaptic α1-containing GlyRs have a role in motivational and early reinforcing effects of ethanol and open a novel opportunity for pharmacotherapy development to treat alcohol use disorders.


Asunto(s)
Alcoholismo/fisiopatología , Encéfalo/efectos de los fármacos , Encéfalo/fisiopatología , Etanol/farmacología , Receptores de Glicina/metabolismo , Alcoholismo/metabolismo , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Etanol/metabolismo , Ratones , Ratones Endogámicos C57BL , Receptores de Glicina/efectos de los fármacos
5.
J Biol Chem ; 291(36): 18791-8, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27402845

RESUMEN

The acute intoxicating effects of ethanol in the central nervous system result from the modulation of several molecular targets. It is widely accepted that ethanol enhances the activity of the glycine receptor (GlyR), thus enhancing inhibitory neurotransmission, leading to motor effects, sedation, and respiratory depression. We previously reported that small peptides interfered with the binding of Gßγ to the GlyR and consequently inhibited the ethanol-induced potentiation of the receptor. Now, using virtual screening, we identified a subset of small molecules capable of interacting with the binding site of Gßγ. One of these compounds, M554, inhibited the ethanol potentiation of the GlyR in both evoked currents and synaptic transmission in vitro When this compound was tested in vivo in mice treated with ethanol (1-3.5 g/kg), it was found to induce a faster recovery of motor incoordination in rotarod experiments and a shorter sedative effect in loss of righting reflex assays. This study describes a novel molecule that might be relevant for the design of useful therapeutic compounds in the treatment of acute alcohol intoxication.


Asunto(s)
Intoxicación Alcohólica/tratamiento farmacológico , Etanol/efectos adversos , Subunidades beta de la Proteína de Unión al GTP/antagonistas & inhibidores , Subunidades gamma de la Proteína de Unión al GTP/antagonistas & inhibidores , Péptidos , Receptores de Glicina/antagonistas & inhibidores , Transmisión Sináptica/efectos de los fármacos , Intoxicación Alcohólica/metabolismo , Animales , Etanol/farmacología , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Células HEK293 , Humanos , Ratones , Péptidos/química , Péptidos/farmacología , Receptores de Glicina/metabolismo
6.
Mol Pharmacol ; 90(3): 318-25, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27401877

RESUMEN

Glycine receptors (GlyR) are inhibitory Cys-loop ion channels that contribute to the control of excitability along the central nervous system (CNS). GlyR are found in the spinal cord and brain stem, and more recently they were reported in higher regions of the CNS such as the hippocampus and nucleus accumbens. GlyR are involved in motor coordination, respiratory rhythms, pain transmission, and sensory processing, and they are targets for relevant physiologic and pharmacologic modulators. Several studies with protein crystallography and cryoelectron microscopy have shed light on the residues and mechanisms associated with the activation, blockade, and regulation of pentameric Cys-loop ion channels at the atomic level. Initial studies conducted on the extracellular domain of acetylcholine receptors, ion channels from prokaryote homologs-Erwinia chrysanthemi ligand-gated ion channel (ELIC), Gloeobacter violaceus ligand-gated ion channel (GLIC)-and crystallized eukaryotic receptors made it possible to define the overall structure and topology of the Cys-loop receptors. For example, the determination of pentameric GlyR structures bound to glycine and strychnine have contributed to visualizing the structural changes implicated in the transition between the open and closed states of the Cys-loop receptors. In this review, we summarize how the new information obtained in functional, mutagenesis, and structural studies have contributed to a better understanding of the function and regulation of GlyR.


Asunto(s)
Receptores de Glicina/química , Receptores de Glicina/metabolismo , Animales , Sitios de Unión , Humanos , Activación del Canal Iónico , Modelos Moleculares , Estructura Secundaria de Proteína
8.
J Neurochem ; 132(6): 731-41, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25669123

RESUMEN

It has been postulated that the accumulation of extracellular α-synuclein (α-syn) might alter the neuronal membrane by formation of 'pore-like structures' that will lead to alterations in ionic homeostasis. However, this has never been demonstrated to occur in brain neuronal plasma membranes. In this study, we show that α-syn oligomers rapidly associate with hippocampal membranes in a punctate fashion, resulting in increased membrane conductance (5 fold over control) and the influx of both calcium and a fluorescent glucose analogue. The enhancement in intracellular calcium (1.7 fold over control) caused a large increase in the frequency of synaptic transmission (2.5 fold over control), calcium transients (3 fold over control), and synaptic vesicle release. Both primary hippocampal and dissociated nigral neurons showed rapid increases in membrane conductance by α-syn oligomers. In addition, we show here that α-syn caused synaptotoxic failure associated with a decrease in SV2, a membrane protein of synaptic vesicles associated with neurotransmitter release. In conclusion, extracellular α-syn oligomers facilitate the perforation of the neuronal plasma membrane, thus explaining, in part, the synaptotoxicity observed in neurodegenerative diseases characterized by its extracellular accumulation. We propose that α-synuclein (α-syn) oligomers form pore-like structures in the plasma membrane of neurons from central nervous system (CNS). We believe that extracellular α-syn oligomers facilitate the formation of α-syn membrane pore-like structures, thus explaining, in part, the synaptotoxicity observed in neurodegenerative diseases characterized by its extracellular accumulation. We think that alterations in ionic homeostasis and synaptic vesicular depletion are key steps that lead to synaptotoxicity promoted by α -syn membrane pore-like structures.


Asunto(s)
Membrana Celular/metabolismo , Líquido Extracelular/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Transmisión Sináptica/fisiología , alfa-Sinucleína/metabolismo , Animales , Encéfalo/citología , Encéfalo/metabolismo , Células Cultivadas , Femenino , Hipocampo/citología , Técnicas de Cultivo de Órganos , Embarazo , Ratas Sprague-Dawley
9.
J Pharmacol Exp Ther ; 352(1): 148-55, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25339760

RESUMEN

The α1-subunit containing glycine receptors (GlyRs) is potentiated by ethanol, in part, by intracellular Gßγ actions. Previous studies have suggested that molecular requirements in the large intracellular domain are involved; however, the lack of structural data about this region has made it difficult to describe a detailed mechanism. Using circular dichroism and molecular modeling, we generated a full model of the α1-GlyR, which includes the large intracellular domain and provides new information on structural requirements for allosteric modulation by ethanol and Gßγ. The data strongly suggest the existence of an α-helical conformation in the regions near transmembrane (TM)-3 and TM4 of the large intracellular domain. The secondary structure in the N-terminal region of the large intracellular domain near TM3 appeared critical for ethanol action, and this was tested using the homologous domain of the γ2-subunit of the GABAA receptor predicted to have little helical conformation. This region of γ2 was able to bind Gßγ and form a functional channel when combined with α1-GlyR, but it was not sensitive to ethanol. Mutations in the N- and C-terminal regions introduced to replace corresponding amino acids of the α1-GlyR sequence restored the ability to be modulated by ethanol and Gßγ. Recovery of the sensitivity to ethanol was associated with the existence of a helical conformation similar to α1-GlyR, thus being an essential secondary structural requirement for GlyR modulation by ethanol and G protein.


Asunto(s)
Etanol/farmacología , Subunidades beta de la Proteína de Unión al GTP/farmacología , Subunidades gamma de la Proteína de Unión al GTP/farmacología , Espacio Intracelular/metabolismo , Receptores de Glicina/química , Receptores de Glicina/metabolismo , Secuencia de Aminoácidos , Animales , Relación Dosis-Respuesta a Droga , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Secundaria de Proteína/efectos de los fármacos , Estructura Terciaria de Proteína/efectos de los fármacos , Ratas , Receptores de GABA-A/metabolismo
10.
J Pharmacol Exp Ther ; 353(1): 80-90, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25589412

RESUMEN

Previous studies have shown that the effect of ethanol onglycine receptors (GlyRs) containing the a1 subunit is affected by interaction with heterotrimeric G proteins (Gßγ). GlyRs containing the α3 subunit are involved in inflammatory pain sensitization and rhythmic breathing and have received much recent attention. For example, it is unknown whether ethanol affects the function of this important GlyR subtype. Electrophysiologic experiments showed that GlyR α3 subunits were not potentiated by pharmacologic concentrations of ethanol or by Gßγ. Thus, we studied GlyR α1­α3 chimeras and mutants to determine the molecular properties that confer ethanol insensitivity. Mutation of corresponding glycine 254 in transmembrane domain 2 (TM2) found in a1 in the α3(A254G) ­α1 chimera induced a glycine-evoked current that displayed potentiation during application of ethanol (46 ± 5%, 100 mM) and Gßγ activation (80 ± 17%). Interestingly,insertion of the intracellular α3L splice cassette into GlyR α1 abolished the enhancement of the glycine-activated current by ethanol (5 ± 6%) and activation by Gßγ (21 6 7%). In corporation of the GlyR α1 C terminus into the ethanol-resistant α3S(A254G) mutant produced a construct that displayed potentiation of the glycine-activated current with 100 mM ethanol (40 ± 6%)together with a current enhancement after G protein activation (68 ± 25%). Taken together, these data demonstrate that GlyRα3 subunits are not modulated by ethanol. Residue A254 in TM2, the α3L splice cassette, and the C-terminal domain of α3GlyRs are determinants for low ethanol sensitivity and form the molecular basis of subtype-selective modulation of GlyRs by alcohol.


Asunto(s)
Etanol/farmacología , Receptores de Glicina/metabolismo , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Estructura Terciaria de Proteína , Ratas , Receptores de Glicina/genética
11.
Pharmacol Res ; 101: 18-29, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26158502

RESUMEN

It is well accepted that ethanol is able to produce major health and economic problems associated to its abuse. Because of its intoxicating and addictive properties, it is necessary to analyze its effect in the central nervous system. However, we are only now learning about the mechanisms controlling the modification of important membrane proteins such as ligand-activated ion channels by ethanol. Furthermore, only recently are these effects being correlated to behavioral changes. Current studies show that the glycine receptor (GlyR) is a susceptible target for low concentrations of ethanol (5-40mM). GlyRs are relevant for the effects of ethanol because they are found in the spinal cord and brain stem where they primarily express the α1 subunit. More recently, the presence of GlyRs was described in higher regions, such as the hippocampus and nucleus accumbens, with a prevalence of α2/α3 subunits. Here, we review data on the following aspects of ethanol effects on GlyRs: (1) direct interaction of ethanol with amino acids in the extracellular or transmembrane domains, and indirect mechanisms through the activation of signal transduction pathways; (2) analysis of α2 and α3 subunits having different sensitivities to ethanol which allows the identification of structural requirements for ethanol modulation present in the intracellular domain and C-terminal region; (3) Genetically modified knock-in mice for α1 GlyRs that have an impaired interaction with G protein and demonstrate reduced ethanol sensitivity without changes in glycinergic transmission; and (4) GlyRs as potential therapeutic targets.


Asunto(s)
Conducta/efectos de los fármacos , Etanol/farmacología , Receptores de Glicina/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Anestésicos Generales/farmacología , Animales , Conducta/fisiología , Etanol/toxicidad , Humanos , Ratones , Ratones Mutantes , Modelos Neurológicos , Receptores de Glicina/química , Receptores de Glicina/genética , Receptores de Glicina/metabolismo , Transducción de Señal/efectos de los fármacos , Transmisión Sináptica/fisiología
12.
J Neurophysiol ; 111(10): 1940-8, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24572089

RESUMEN

Ethanol increased the frequency of miniature glycinergic currents [miniature inhibitory postsynaptic currents (mIPSCs)] in cultured spinal neurons. This effect was dependent on intracellular calcium augmentation, since preincubation with BAPTA (an intracellular calcium chelator) or thapsigargin [a sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) pump inhibitor] significantly attenuated this effect. Similarly, U73122 (a phospholipase C inhibitor) or 2-aminoethoxydiphenyl borate [2-APB, an inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) inhibitor] reduced this effect. Block of ethanol action was also achieved after preincubation with Rp-cAMPS, inhibitor of the adenylate cyclase (AC)/PKA signaling pathway. These data suggest that there is a convergence at the level of IP3R that accounts for presynaptic ethanol effects. At the postsynaptic level, ethanol increased the decay time constant of mIPSCs in a group of neurons (30 ± 10% above control, n = 13/26 cells). On the other hand, the currents activated by exogenously applied glycine were consistently potentiated (55 ± 10% above control, n = 11/12 cells), which suggests that ethanol modulates synaptic and nonsynaptic glycine receptors (GlyRs) in a different fashion. Supporting the role of G protein modulation on ethanol responses, we found that a nonhydrolyzable GTP analog [guanosine 5'-O-(3-thiotriphosphate) (GTPγS)] increased the decay time constant in ∼50% of the neurons (28 ± 12%, n = 11/19 cells) but potentiated the glycine-activated Cl(-) current in most of the neurons examined (83 ± 29%, n = 7/9 cells). In addition, confocal microscopy showed that α1-containing GlyRs colocalized with Gß and Piccolo (a presynaptic cytomatrix protein) in ∼40% of synaptic receptor clusters, suggesting that colocalization of Gßγ and GlyRs might account for the difference in ethanol sensitivity at the postsynaptic level.


Asunto(s)
Depresores del Sistema Nervioso Central/farmacología , Etanol/farmacología , Glicina/metabolismo , Neuronas/efectos de los fármacos , Médula Espinal/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Inhibidores de Adenilato Ciclasa , Adenilil Ciclasas/metabolismo , Animales , Calcio/metabolismo , Células Cultivadas , Canales de Cloruro/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Guanosina Trifosfato/análogos & derivados , Guanosina Trifosfato/metabolismo , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Receptores de Inositol 1,4,5-Trifosfato/antagonistas & inhibidores , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Ratones Endogámicos C57BL , Potenciales Postsinápticos Miniatura/efectos de los fármacos , Neuronas/fisiología , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/fisiología , Receptores de Glicina/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/antagonistas & inhibidores , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Médula Espinal/fisiología , Transmisión Sináptica/fisiología , Fosfolipasas de Tipo C/antagonistas & inhibidores , Fosfolipasas de Tipo C/metabolismo
13.
Life Sci ; 348: 122673, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38679193

RESUMEN

AIMS: Glycine receptors (GlyRs) are potentiated by physiologically relevant concentrations of ethanol, and mutations in the intracellular loop of α1 and α2 subunits reduced the effect of the drug. Knock-in (KI) mice having these individual mutations revealed that α1 and α2 subunits played a role in ethanol-induced sedation and ethanol intake. In this study, we wanted to examine if the effects of stacking both mutations in a 2xKI mouse model (α1/α2) generated by a selective breeding strategy further impacted cellular and behavioral responses to ethanol. MAIN METHODS: We used electrophysiological recordings to examine ethanol's effect on GlyRs and evaluated ethanol-induced neuronal activation using c-Fos immunoreactivity and the genetically encoded calcium indicator GCaMP6s in the nucleus accumbens (nAc). We also examined ethanol-induced behavior using open field, loss of the righting response, and drinking in the dark (DID) paradigm. KEY FINDINGS: Ethanol did not potentiate GlyRs nor affect neuronal excitability in the nAc from 2xKI. Moreover, ethanol decreased the Ca2+ signal in WT mice, whereas there were no changes in the signal in 2xKI mice. Interestingly, there was an increase in c-Fos baseline in the 2xKI mice in the absence of ethanol. Behavioral assays showed that 2xKI mice recovered faster from a sedative dose of ethanol and had higher ethanol intake on the first test day of the DID test than WT mice. Interestingly, an open-field assay showed that 2xKI mice displayed less anxiety-like behavior than WT mice. SIGNIFICANCE: The results indicate that α1 and α2 subunits are biologically relevant targets for regulating sedative effects and ethanol consumption.


Asunto(s)
Etanol , Técnicas de Sustitución del Gen , Receptores de Glicina , Animales , Etanol/farmacología , Receptores de Glicina/genética , Receptores de Glicina/metabolismo , Ratones , Masculino , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efectos de los fármacos , Consumo de Bebidas Alcohólicas/genética , Consumo de Bebidas Alcohólicas/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Ratones Endogámicos C57BL , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Ratones Transgénicos , Receptores de GABA-A
14.
Prog Neurobiol ; 237: 102616, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38723884

RESUMEN

Alterations in cognitive and non-cognitive cerebral functions characterize Alzheimer's disease (AD). Cortical and hippocampal impairments related to extracellular accumulation of Aß in AD animal models have been extensively investigated. However, recent reports have also implicated intracellular Aß in limbic regions, such as the nucleus accumbens (nAc). Accumbal neurons express high levels of inhibitory glycine receptors (GlyRs) that are allosterically modulated by ethanol and have a role in controlling its intake. In the present study, we investigated how GlyRs in the 2xTg mice (AD model) affect nAc functions and ethanol intake behavior. Using transgenic and control aged-matched litter mates, we found that the GlyRα2 subunit was significantly decreased in AD mice (6-month-old). We also examined intracellular calcium dynamics using the fluorescent calcium protein reporter GCaMP in slice photometry. We also found that the calcium signal mediated by GlyRs, but not GABAAR, was also reduced in AD neurons. Additionally, ethanol potentiation was significantly decreased in accumbal neurons in the AD mice. Finally, we performed drinking in the dark (DID) experiments and found that 2xTg mice consumed less ethanol on the last day of DID, in agreement with a lower blood ethanol concentration. 2xTg mice also showed lower sucrose consumption, indicating that overall food reward was altered. In conclusion, the data support the role of GlyRs in nAc neuron excitability and a decreased glycinergic activity in the 2xTg mice that might lead to impairment in reward processing at an early stage of the disease.


Asunto(s)
Enfermedad de Alzheimer , Modelos Animales de Enfermedad , Etanol , Ratones Transgénicos , Núcleo Accumbens , Receptores de Glicina , Recompensa , Animales , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efectos de los fármacos , Enfermedad de Alzheimer/metabolismo , Receptores de Glicina/metabolismo , Etanol/administración & dosificación , Etanol/farmacología , Ratones , Masculino , Neuronas/metabolismo , Ratones Endogámicos C57BL , Consumo de Bebidas Alcohólicas/metabolismo
15.
J Biol Chem ; 287(48): 40713-21, 2012 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-23035114

RESUMEN

BACKGROUND: Gßγ interaction with GlyR is an important determinant in ethanol potentiation of this channel. RESULTS: A small peptide, RQH(C7), can inhibit ethanol potentiation of GlyR currents. CONCLUSION: Results with RQH(C7) indicate that ethanol mediated potentiation of GlyR is in part by Gßγ activation. SIGNIFICANCE: Molecular interaction between Gßγ and GlyR could be used as a target for pharmacological modification of ethanol effects. Previous studies indicate that ethanol can modulate glycine receptors (GlyR), in part, through Gßγ interaction with basic residues in the intracellular loop. In this study, we show that a seven-amino acid peptide (RQH(C7)), which has the primary structure of a motif in the large intracellular loop of GlyR (GlyR-IL), was able to inhibit the ethanol-elicited potentiation of this channel from 47 ± 2 to 16 ± 4%, without interfering with the effect of Gßγ on GIRK (G protein activated inwardly rectifying potassium channel) activation. RQH(C7) displayed a concentration-dependent effect on ethanol action in evoked and synaptic currents. A fragment of GlyR-IL without the basic amino acids did not interact with Gßγ or inhibit ethanol potentiation of GlyR. In silico analysis using docking and molecular dynamics allowed to identify a region of ~350Å(2) involving aspartic acids 186, 228, and 246 in Gßγ where we propose that RQH(C7) binds and exerts its blocking action on the effect of ethanol in GlyR.


Asunto(s)
Etanol/metabolismo , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Péptidos/metabolismo , Receptores de Glicina/metabolismo , Subunidades beta de la Proteína de Unión al GTP/química , Subunidades beta de la Proteína de Unión al GTP/genética , Subunidades gamma de la Proteína de Unión al GTP/genética , Células HEK293 , Humanos , Cinética , Péptidos/química , Unión Proteica , Receptores de Glicina/química , Receptores de Glicina/genética
16.
Neuropsychopharmacology ; 48(9): 1367-1376, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36175550

RESUMEN

The nucleus accumbens (nAc) is a critical region in the brain reward system since it integrates abundant synaptic inputs contributing to the control of neuronal excitability in the circuit. The presence of inhibitory α1 glycine receptor (GlyRs) subunits, sensitive to ethanol, has been recently reported in accumbal neurons suggesting that they are protective against excessive binge consumption. In the present study, we used viral vectors (AAV) to overexpress mutant and WT α1 subunits in accumbal neurons in D1 Cre and α1 KI mice. Injection of a Cre-inducible AAV carrying an ethanol insensitive α1 subunit in D1 Cre neurons was unable to affect sensitivity to ethanol in GlyRs or affect ethanol drinking. On the other hand, using an AAV that transduced WT α1 GlyRs in GABAergic neurons in the nAc of high-ethanol consuming mice caused a reduction in ethanol intake as reflected by lowered drinking in the dark and reduced blood ethanol concentration. As expected, the AAV increased the glycine current density by 5-fold without changing the expression of GABAA receptors. Examination of the ethanol sensitivity in isolated accumbal neurons indicated that the GlyRs phenotype changed from an ethanol resistant to an ethanol sensitive type. These results support the conclusion that increased inhibition in the nAc can control excessive ethanol consumption and that selective targeting of GlyRs by pharmacotherapy might provide a mechanistic procedure to reduce ethanol binge.


Asunto(s)
Consumo Excesivo de Bebidas Alcohólicas , Glicina , Animales , Ratones , Consumo Excesivo de Bebidas Alcohólicas/genética , Consumo Excesivo de Bebidas Alcohólicas/metabolismo , Etanol/farmacología , Neuronas GABAérgicas/metabolismo , Glicina/farmacología , Glicina/metabolismo , Núcleo Accumbens/metabolismo , Receptores de Glicina/genética , Receptores de Glicina/metabolismo
17.
Heliyon ; 9(5): e15840, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37180892

RESUMEN

Neonicotinoids are effective insecticides with specificity for invertebrate nicotinic acetylcholine receptors. Neonicotinoids are chemically stable and tend to remain in the environment for long so concerns about their neurotoxicity in humans do nothing but increase. Herein, we evaluated the chronic toxic effects of acetamiprid- and imidacloprid-based insecticides over the differentiation of human neuroblastoma SH-SY5Y cells, which were exposed to these insecticides at a concentration range similar to that applied to crop fields (0.01-0.5 mM). Both insecticides did not have acute cytotoxic effects in both non-differentiated and in staurosporine-differentiated SH-SY5Y cells cytotoxicity as measured by the MTT and vital-dye exclusion tests. However, after a chronic (7-day) treatment, only imidacloprid dose-dependently decreased the viability of SH-SY5Y cells (F(4,39) = 43.05, P < 0.001), largely when administered-during cell differentiation (F(4,39) = 51.86, P < 0.001). A well-defined dose-response curve was constructed for imidacloprid on day 4 (R2 = 0.945, EC50 = 0.14 mM). During differentiation, either imidacloprid or acetamiprid dose-dependently caused neurite branch retraction on day 3, likely because of oxidative stress, to the extent that cells turned into spheres without neurites after 7-day treatment. Despite their apparent safety, the neurodevelopmental vulnerability of SH-SY5Y neurons to the chronic exposure to imidacloprid and to a lesser extent to acetamiprid points to a neurotoxic risk for humans.

18.
J Neurosci ; 31(26): 9672-82, 2011 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-21715633

RESUMEN

Ionotropic GABA receptors (GABA(A) and GABA(C)) belong to the Cys-loop receptor family of ligand-gated ion channels. GABA(C) receptors are highly expressed in the retina, mainly localized at the axon terminals of bipolar cells. Ascorbic acid, an endogenous redox agent, modulates the function of diverse proteins, and basal levels of ascorbic acid in the retina are very high. However, the effect of ascorbic acid on retinal GABA receptors has not been studied. Here we show that the function of GABA(C) and GABA(A) receptors is regulated by ascorbic acid. Patch-clamp recordings from bipolar cell terminals in goldfish retinal slices revealed that GABA(C) receptor-mediated currents activated by tonic background levels of extracellular GABA, and GABA(C) currents elicited by local GABA puffs, are both significantly enhanced by ascorbic acid. In addition, a significant rundown of GABA puff-evoked currents was observed in the absence of ascorbic acid. GABA-evoked Cl(-) currents mediated by homomeric ρ(1) GABA(C) receptors expressed in Xenopus laevis oocytes were also potentiated by ascorbic acid in a concentration-dependent, stereo-specific, reversible, and voltage-independent manner. Studies involving the chemical modification of sulfhydryl groups showed that the two Cys-loop cysteines and histidine 141, all located in the ρ(1) subunit extracellular domain, each play a key role in the modulation of GABA(C) receptors by ascorbic acid. Additionally, we show that retinal GABA(A) IPSCs and heterologously expressed GABA(A) receptor currents are similarly augmented by ascorbic acid. Our results suggest that ascorbic acid may act as an endogenous agent capable of potentiating GABAergic neurotransmission in the CNS.


Asunto(s)
Ácido Ascórbico/farmacología , Receptores de GABA/metabolismo , Retina/efectos de los fármacos , Células Bipolares de la Retina/efectos de los fármacos , Regulación Alostérica , Animales , Ácido Ascórbico/metabolismo , Células Cultivadas , Fenómenos Electrofisiológicos , Femenino , Carpa Dorada , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Retina/metabolismo , Células Bipolares de la Retina/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Ácido gamma-Aminobutírico/farmacología
19.
J Pharmacol Exp Ther ; 340(2): 339-49, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22040678

RESUMEN

Ethanol alters the function of several members of the Cys-loop ligand-gated ion channel superfamily. Recent studies have shown that the sensitivity of the α1 glycine receptor (GlyR) to ethanol can be affected by the state of G protein activation mediated by the interaction of Gßγ with intracellular amino acids in the GlyR. Here, we evaluated the physicochemical property of Lys385 that contributes to ethanol modulation by using mutagenesis, patch-clamp, and biochemical techniques. A conserved substitution (K385R) did not affect either the apparent glycine EC50 (40 ± 1 versus 41 ± 0.5 µM) or the ethanol-induced potentiation (53 ± 5 versus 46 ± 5%) of the human α1 GlyR. On the other hand, replacement of this residue with glutamic acid (K385E), an acidic amino acid, reduced the potentiation of the GlyR to 10 ± 1%. Furthermore, mutations with a hydrophobic leucine (K385L), a hydrogen bond donor glutamine (K385Q), or a neutral residue (K385A) also reduced ethanol modulation. Finally, substitution by a large and hydrophobic residue (K385F) and deletion of 385 (Lys385_) reduced ethanol modulation to 10 ± 4 and 17 ± 0.4%, respectively. Experiments using dynamic cysteine substitution with a methanethiosulfonate reagent and homology modeling indicate that the basic property and the position of Lys385, probably because of its interaction with Gßγ, is critical for ethanol potentiation of the receptor.


Asunto(s)
Etanol/farmacología , Lisina/química , Receptores de Glicina/química , Receptores de Glicina/metabolismo , Sustitución de Aminoácidos , Membrana Celular/metabolismo , Fenómenos Químicos , Cisteína/química , Cisteína/genética , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Fenómenos Electrofisiológicos/efectos de los fármacos , Fenómenos Electrofisiológicos/fisiología , Metanosulfonato de Etilo/análogos & derivados , Metanosulfonato de Etilo/química , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Glicina/farmacología , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/farmacología , Células HEK293 , Humanos , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/fisiología , Lisina/genética , Modelos Moleculares , Neurotransmisores/farmacología , Técnicas de Placa-Clamp , Propofol/farmacología , Dominios y Motivos de Interacción de Proteínas/fisiología , Receptores de Glicina/efectos de los fármacos , Receptores de Glicina/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Electricidad Estática , Propiedades de Superficie , Transfección
20.
Theranostics ; 12(4): 1518-1536, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35198055

RESUMEN

Objectives: Glucokinase Regulatory Protein (GKRP) is the only known endogenous modulator of glucokinase (GK) localization and activity to date, and both proteins are localized in tanycytes, radial glia-like cells involved in metabolic and endocrine functions in the hypothalamus. However, the role of tanycytic GKRP and its impact on the regulation of feeding behavior has not been investigated. Here, we hypothesize that GKRP regulates feeding behavior by modulating tanycyte-neuron metabolic communication in the arcuate nucleus. Methods: We used primary cultures of tanycytes to evaluate the production of lactate and ß-hydroxybutyrate (ßHB). Similarly, we examined the electrophysiological responses to these metabolites in pro-opiomelanocortin (POMC) neurons in hypothalamic slices. To evaluate the role of GKRP in feeding behavior, we generated tanycyte-selective GKRP-overexpressing and GKRP-knock down mice (GKRPt-OE and GKRPt-KD respectively) using adenovirus-mediated transduction. Results: We demonstrated that lactate release induced by glucose uptake is favored in GKRP-KD tanycytes. Conversely, tanycytes overexpressing GKRP showed an increase in ßHB efflux induced by low glucose concentration. In line with these findings, the excitability of POMC neurons was enhanced by lactate and decreased in the presence of ßHB. In GKRPt-OE rats, we found an increase in post-fasting food avidity, whereas GKRPt-KD caused a significant decrease in feeding and body weight, which is reverted when MCT1 is silenced. Conclusion: Our study highlights the role of tanycytic GKRP in metabolic regulation and positions this regulator of GK as a therapeutic target for boosting satiety in patients with obesity problems.


Asunto(s)
Células Ependimogliales , Proopiomelanocortina , Animales , Proteínas Portadoras , Conducta Alimentaria , Glucoquinasa/metabolismo , Humanos , Ácido Láctico/metabolismo , Ratones , Proopiomelanocortina/metabolismo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA