RESUMEN
The mitochondrial permeability transition (MPT) pore regulates necrotic cell death following diverse cardiac insults. While the componentry of the pore itself remains controversial, Cyclophilin D (CypD) has been well-established as a positive regulator of pore opening. We have previously identified Complement 1q-binding protein (C1qbp) as a novel CypD-interacting molecule and a negative regulator of MPT-dependent cell death in vitro. However, its effects on the MPT pore and sensitivity to cell death in the heart remain untested. We therefore hypothesized that C1qbp would inhibit MPT in cardiac mitochondria and protect cardiac myocytes against cell death in vivo. To investigate the effects of C1qbp in the myocardium we generated gain- and loss-of-function mice. Transgenic C1qbp overexpression resulted in decreased complex protein expression and reduced mitochondrial respiration and ATP production but MPT was unaffected. In contrast, while C1qbp+/- mice did not exhibit any changes in mitochondrial protein expression, respiration, or ATP, the MPT pore was markedly sensitized to Ca2+ in these animals. Neither overexpression nor depletion of C1qbp significantly affected baseline heart morphology or function at 3 months of age. When subjected to myocardial infarction, C1qbp transgenic mice exhibited similar infarct sizes and cardiac remodeling to non-transgenic mice, consistent with the lack of an effect on MPT. In contrast, cardiac scar formation and dysfunction were significantly increased in the C1qbp+/- mice compared to C1qbp+/+ controls. Our results suggest that C1qbp is required for normal regulation of the MPT pore and mitochondrial function, and influences cardiac remodeling following MI, the latter more likely being independent of C1qbp effects on the MPT pore.
Asunto(s)
Ratones Transgénicos , Poro de Transición de la Permeabilidad Mitocondrial , Infarto del Miocardio , Miocitos Cardíacos , Animales , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Remodelación Ventricular , Mitocondrias Cardíacas/metabolismo , Calcio/metabolismo , Peptidil-Prolil Isomerasa F/metabolismo , Peptidil-Prolil Isomerasa F/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Necrosis por Permeabilidad de la Transmembrana Mitocondrial , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Adenosina Trifosfato/metabolismo , Proteínas MitocondrialesRESUMEN
We report a novel small-molecule screening approach that combines data augmentation and machine learning to identify Food and Drug Administration (FDA)-approved drugs interacting with the calcium pump (Sarcoplasmic reticulum Ca2+-ATPase, SERCA) from skeletal (SERCA1a) and cardiac (SERCA2a) muscle. This approach uses information about small-molecule effectors to map and probe the chemical space of pharmacological targets, thus allowing to screen with high precision large databases of small molecules, including approved and investigational drugs. We chose SERCA because it plays a major role in the excitation-contraction-relaxation cycle in muscle and it represents a major target in both skeletal and cardiac muscle. The machine learning model predicted that SERCA1a and SERCA2a are pharmacological targets for seven statins, a group of FDA-approved 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors used in the clinic as lipid-lowering medications. We validated the machine learning predictions by using in vitro ATPase assays to show that several FDA-approved statins are partial inhibitors of SERCA1a and SERCA2a. Complementary atomistic simulations predict that these drugs bind to two different allosteric sites of the pump. Our findings suggest that SERCA-mediated Ca2+ transport may be targeted by some statins (e.g., atorvastatin), thus providing a molecular pathway to explain statin-associated toxicity reported in the literature. These studies show the applicability of data augmentation and machine learning-based screening as a general platform for the identification of off-target interactions and the applicability of this approach extends to drug discovery.
Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/metabolismo , Miocardio/enzimología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/antagonistas & inhibidores , Aprendizaje AutomáticoRESUMEN
Allosteric modulation plays a critical role in enzyme functionality and requires a deep understanding of the interactions between the active and allosteric sites. γ-Secretase (GS) is a key therapeutic target in the treatment of Alzheimer's disease (AD), through its role in the synthesis of amyloid ß peptides that accumulate in AD patients. This study explores the structure and dynamic effects of GS modulation by E2012 binding, employing well-tempered metadynamics and conventional molecular dynamics simulations across three binding scenarios: (1) GS enzyme with and without L458 inhibitor, (2) the GS-substrate complex together with the modulator E2012 in two different binding modes, and (3) E2012 interacting with a C99 substrate fragment. Our findings reveal that the presence of L458 induces conformational changes that contribute to stabilization of the GS enzyme dynamics, previously reported as a key factor that allowed the resolution of the cryo-EM structure and the enhanced binding of E2012. Furthermore, we identified the most favorable binding site for E2012 within the GS-substrate complex, uncovering significant modulatory effects and a complex network of interactions that influence the position of the substrate for catalysis. In addition, we explore a potential substrate-modulator binding before the formation of the enzyme-substrate complex. The insights gained from our study emphasize the importance of these interactions in the development of potential therapeutic interventions that target the functionality of the GS enzyme in AD.
Asunto(s)
Alanina/análogos & derivados , Secretasas de la Proteína Precursora del Amiloide , Simulación de Dinámica Molecular , Unión Proteica , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/química , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Especificidad por Sustrato , Humanos , Conformación Proteica , Regulación Alostérica/efectos de los fármacos , AzepinasRESUMEN
A decoction of the roots (31.6-316 mg/kg) from Stevia serrata Cav. (Asteraceae) as well as the main component (5-150 mg/kg) showed hypoglycemic and antihyperglycemic effects in mice. The fractionation of the active extract led to the isolation of dammaradiene acetate (1), stevisalioside A (2), and three new chemical entities characterized by spectroscopic methods and named stevisaliosides B-D (3-5). Glycoside 2 (5 and 50 mg/kg) decreased blood glucose levels and the postprandial peak during oral glucose and insulin tolerance tests in STZ-hyperglycemic mice. Compounds 1-5 were tested also against PTP1B1-400 and showed IC50 values of 1180.9 ± 0.33, 526.8 ± 0.02, 532.1 ± 0.03, 928.2 ± 0.39, and 31.8 ± 1.09 µM, respectively. Compound 5 showed an IC50 value comparable to that of ursolic acid (IC50 = 30.7 ± 0.00 µM). Docking studies revealed that 2-5 and their aglycones bind to PTP1B1-400 in a pocket formed by the C-terminal region. The volatilome of S. serrata was characterized by a high content of (E)-longipinene, spathulenol, guaiadiene, seychellene, and aromandendrene. Finally, a UHPLC-UV method was developed and validated to quantify the content of 2 in the decoction of the plant.
Asunto(s)
Asteraceae , Stevia , Ratones , Animales , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Stevia/química , Extractos Vegetales/química , Glucosa , Asteraceae/química , Glucemia/análisisRESUMEN
Botrytis cinerea is a fungal plant pathogen that causes significant economic losses in the agricultural industry worldwide. Fungicides that target microtubules, such as carbendazim (CBZ), diethofencarb (DEF), and zoxamide (ZOX), are widely used in crop protection against this pathogen. These groups of compounds exert their fungicidal activity by disrupting the microtubule assembly by binding to the ß-tubulin subunit, provoking cell-cycle arrest and cell death. However, with the appearance of isolates resistant to these compounds, it is necessary to search for new alternatives to control this pathogenic fungus. In this work, we gained insight into the binding and stability of these fungicides in the benzimidazole binding site of B. cinerea ß-tubulin through different computational approaches. Our molecular dynamics simulation replicas showed that R enantiomers of ZOX and its analog RH-4032 had better interaction profiles at the site compared to S enantiomers. The simulations also revealed that while the R-isomer fungicides formed H-bonds with the main chain carbonyl of V236 or the side chain residue of S314, only CBZ interacted with E198. Previous experimental data have identified key mutations in B. cinerea's ß-tubulin gene that lead to the development of resistance or, on the contrary, increased sensitivity for treatment with these fungicide compounds. In agreement with experimental findings, alchemical free energy calculations showed that E198A and E198V mutations in B. cinerea ß-tubulin have high sensitivity to (R)-ZOX, whereas the E198K mutation decreased its affinity. Similarly, the results obtained explain the resistance to CBZ of B. cinerea isolates with E198A/V/K mutations and the insensitivity of the wild-type organism to DEF. Our work provides a deeper insight into the molecular mechanism of action of these fungicides, highlighting the importance of understanding the interaction profiles to develop more effective antifungal agents.
Asunto(s)
Fungicidas Industriales , Tubulina (Proteína) , Tubulina (Proteína)/genética , Fungicidas Industriales/farmacología , AmidasRESUMEN
Carbendazim derivatives, commonly used as antiparasitic drugs, have shown potential as anticancer agents due to their ability to induce cell cycle arrest and apoptosis in human cancer cells by inhibiting tubulin polymerization. Crystallographic structures of α/ß-tubulin multimers complexed with nocodazole and mebendazole, two carbendazim derivatives with potent anticancer activity, highlighted the possibility of designing compounds that occupy both benzimidazole- and colchicine-binding sites. In addition, previous studies have demonstrated that the incorporation of a phenoxy group at position 5/6 of carbendazim increases the antiproliferative activity in cancer cell lines. Despite the significant progress made in identifying new tubulin-targeting anticancer compounds, further modifications are needed to enhance their potency and safety. In this study, we explored the impact of modifying the phenoxy substitution pattern on antiproliferative activity. Alchemical free energy calculations were used to predict the binding free energy difference upon ligand modification and define the most viable path for structure optimization. Based on these calculations, seven compounds were synthesized and evaluated against lung and colon cancer cell lines. Our results showed that compound 5a, which incorporates an α-naphthyloxy substitution, exhibits the highest antiproliferative activity against both cancer lines (SK-LU-1 and SW620, IC50 < 100 nM) and induces morphological changes in the cells associated with mitotic arrest and mitotic catastrophe. Nevertheless, the tubulin polymerization assay showed that 5a has a lower inhibitory potency than nocodazole. Molecular dynamics simulations suggested that this low antitubulin activity could be associated with the loss of the key H-bond interaction with V236. This study provides insights into the design of novel carbendazim derivatives with anticancer activity.
Asunto(s)
Antineoplásicos , Moduladores de Tubulina , Humanos , Moduladores de Tubulina/química , Estructura Molecular , Relación Estructura-Actividad , Nocodazol/farmacología , Tubulina (Proteína)/metabolismo , Proliferación Celular , Simulación del Acoplamiento Molecular , Antineoplásicos/farmacología , Antineoplásicos/química , Polimerizacion , Ensayos de Selección de Medicamentos AntitumoralesRESUMEN
Methicillin-resistant Staphylococcus aureus (MRSA) increases its antibiotic resistance by forming biofilms. Natural products (NP) or specialized metabolites have demonstrated their ability to decrease the virulence and pathogenesis of MRSA infections by inhibiting biofilm formation. The present study evaluated the antimicrobial and antibiofilm potential against MRSA of a small library of fungal NP isolated from Mexican biodiversity. The most potent antibacterial activity was observed for myrotecisin B, epiequisetin, equisetin, stachybotrolide acetate, monorden A, zearalenone, fuscin, and fusarubin. On the other hand, epifiscalin C, fiscalin C, dimethylglyotoxin, aspernolide B, and butyrolactones I and IV inhibited the biofilm formation without decreasing bacterial growth. To determine the putative mechanism of action of these compounds, docking analyses were performed against SarA and AgrA proteins, targets known to regulate biofilm production in MRSA. Overall, the results demonstrate that fungal NP may act as potential antibiofilm agents for treating MRSA infections.
Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Biopelículas , Antibacterianos/farmacología , Virulencia , Pruebas de Sensibilidad MicrobianaRESUMEN
Parasitic diseases, including giardiasis caused by Giardia lamblia (G. lamblia), present a considerable global health burden. The limited effectiveness and adverse effects of current treatment options underscore the necessity for novel therapeutic compounds. In this study, we employed a rational design strategy to synthesize retroalbendazole (RetroABZ), aiming to address the limitations associated with albendazole, a commonly used drug for giardiasis treatment. RetroABZ exhibited enhanced in vitro activity against G. lamblia trophozoites, demonstrating nanomolar potency (IC50 = 83 nM), outperforming albendazole (189 nM). Moreover, our in vivo murine model of giardiasis displayed a strong correlation, supporting the efficacy of RetroABZ, which exhibited an eleven-fold increase in potency compared to albendazole, with median effective dose (ED50) values of 5 µg/kg and 55 µg/kg, respectively. A notable finding was RetroABZ's significantly improved water solubility (245.74 µg/mL), representing a 23-fold increase compared to albendazole, thereby offering potential opportunities for developing derivatives that effectively target invasive parasites. The molecular docking study revealed that RetroABZ displays an interaction profile with tubulin similar to albendazole, forming hydrogen bonds with Glu198 and Cys236 of the ß-tubulin. Additionally, molecular dynamics studies demonstrated that RetroABZ has a greater number of hydrophobic interactions with the binding site in the ß-tubulin, due to the orientation of the propylthio substituent. Consequently, RetroABZ exhibited a higher affinity compared to albendazole. Overall, our findings underscore RetroABZ's potential as a promising therapeutic candidate not only for giardiasis but also for other parasitic diseases.
Asunto(s)
Antiprotozoarios , Giardia lamblia , Giardiasis , Animales , Ratones , Albendazol/química , Giardiasis/tratamiento farmacológico , Giardiasis/parasitología , Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico , Tubulina (Proteína) , Simulación del Acoplamiento Molecular , SolubilidadRESUMEN
Intracellular calcium signaling is essential for all kingdoms of life. An important part of this process is the sarco-endoplasmic reticulum Ca2+-ATPase (SERCA), which maintains the low cytosolic calcium levels required for intracellular calcium homeostasis. In higher organisms, SERCA is regulated by a series of tissue-specific transmembrane subunits such as phospholamban in cardiac muscles and sarcolipin in skeletal muscles. These regulatory axes are so important for muscle contractility that SERCA, phospholamban, and sarcolipin are practically invariant across mammalian species. With the recent discovery of the arthropod sarcolambans, the family of calcium pump regulatory subunits appears to span more than 550 million years of evolutionary divergence from arthropods to humans. This evolutionary divergence is reflected in the peptide sequences, which vary enormously from one another and only vaguely resemble phospholamban and sarcolipin. The discovery of the sarcolambans allowed us to address two questions. How much sequence variation is tolerated in the regulation of mammalian SERCA activity by the transmembrane peptides? Do divergent peptide sequences mimic phospholamban or sarcolipin in their regulatory activities despite limited sequence similarity? We expressed and purified recombinant sarcolamban peptides from three different arthropods. The peptides were coreconstituted into proteoliposomes with mammalian SERCA1a and the effect of each peptide on the apparent calcium affinity and maximal activity of SERCA was measured. All three peptides were superinhibitors of SERCA, exhibiting either phospholamban-like or sarcolipin-like characteristics. Molecular modeling, protein-protein docking, and molecular dynamics simulations revealed novel features of the divergent peptides and their SERCA regulatory properties.
Asunto(s)
Calcio , Retículo Sarcoplasmático , Animales , Calcio/metabolismo , Señalización del Calcio , Proteínas de Unión al Calcio/química , Humanos , Mamíferos/metabolismo , Simulación de Dinámica Molecular , Proteínas Musculares , Péptidos/metabolismo , Péptidos/farmacología , Proteolípidos/química , Retículo Sarcoplasmático/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/químicaRESUMEN
Oryzalin (ORY) is a dinitroaniline derivative that inhibits the microtubule polymerization in plants and parasitic protozoa by selectively binding to the α-tubulin subunit. This herbicidal agent exhibits good antiprotozoal activity against major human parasites, such as Toxoplasma gondii (toxoplasmosis), Leishmania mexicana (leishmaniasis), and Plasmodium falciparum (malaria). Previous chemical mutagenesis assays on T. gondii α-tubulin (TgAT) have identified key mutations that lead to ORY resistance. Herein, we employed alchemical free energy methods and molecular dynamics simulations to determine if the ORY resistance mutations either decrease the TgAT's affinity of the compound or increase the protein stability. Our results here suggest that L136F and V202F mutations significantly decrease the affinity of ORY to TgAT, while T239I and V252L mutations diminish TgAT's flexibility. On the other hand, protein stability predictors determined that R243S mutation reduces TgAT stability due to the loss of its salt bridge interaction with E27. Interestingly, molecular dynamics simulations confirm that the loss of this key interaction leads to ORY binding site closure. Our study provides a better insight into the TgAT-ORY interaction, further supporting our recently proposed ORY-binding site.
Asunto(s)
Toxoplasma , Humanos , Toxoplasma/genética , Toxoplasma/metabolismo , Tubulina (Proteína)/química , Dinitrobencenos/química , Dinitrobencenos/metabolismo , Dinitrobencenos/farmacología , Sitios de UniónRESUMEN
In current work, we prepared a series of nine 4-benzyloxy-5-benzylidene-1,3-thiazolidine-2,4-diones using a two-step pathway. Compounds 1-9 were tested in vitro using a set of three proteins recognized as important targets in diabetes and related diseases: PPARα, PPARγ, and GLUT-4. Compounds 1-3, 5, and 7 showed significant increases in the mRNA expression of PPARγ and GLUT-4, whereas compounds 1-3 did it over PPARα. Compounds 1-3 were identified as a dual PPAR α/γ modulators and were selected for evaluating the in vivo antidiabetic action at 100 mg/kg dose, being orally actives and decreasing blood glucose concentration in a hyperglycemic mice model, as well as reducing the triacylglycerides levels in normolipidemic rats. Docking and molecular dynamics studies were conducted to clarify the dual effect and binding mode of compounds 1-3 on both PPARs. Compounds 2 and 3 exhibited robust in vitro and in vivo efficacy and could be considered dual PPAR modulators with antidiabetic and antidyslipidemic effects.
Asunto(s)
Hipoglucemiantes , PPAR gamma , Animales , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Lípidos , Ratones , PPAR alfa/metabolismo , PPAR gamma/metabolismo , Ratas , Tiazolidinas/farmacologíaRESUMEN
Trichomoniasis is a sexually transmitted disease with a high incidence worldwide, affecting 270 million people. Despite the existence of a catalog of available drugs to combat this infection, their extensive use promotes the appearance of resistant Trichomonas vaginalis (T. vaginalis), and some side effects in treated people, which are reasons why it is necessary to find new alternatives to combat this infection. In this study, we investigated the impact of an in-house library comprising 55 compounds on the activity of the fused T. vaginalis G6PD::6PGL (TvG6PD::6PGL) protein, a protein mediating the first reaction step of the pentose phosphate pathway (PPP), a crucial pathway involved in the parasite's energy production. We found four compounds: JMM-3, CNZ-3, CNZ-17, and MCC-7, which inhibited the TvG6PD::6PGL protein by more than 50%. Furthermore, we determined the IC50, the inactivation constants, and the type of inhibition. Our results showed that these inhibitors induced catalytic function loss of the TvG6PD::6PGL enzyme by altering its secondary and tertiary structures. Finally, molecular docking was performed for the best inhibitors, JMM-3 and MCC-7. All our findings demonstrate the potential role of these selected hit compounds as TvG6PD::6PGL enzyme selective inhibitors.
Asunto(s)
Antibacterianos/química , Proteínas Bacterianas , Inhibidores Enzimáticos/química , Glucosafosfato Deshidrogenasa , Simulación del Acoplamiento Molecular , Trichomonas vaginalis/enzimología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Glucosafosfato Deshidrogenasa/antagonistas & inhibidores , Glucosafosfato Deshidrogenasa/química , CinéticaRESUMEN
A high-yielding total synthesis of the indole alkaloid prenostodione was completed in 4 steps and 44% overall yield from 1H-indole-3-carboxylic acid. The expedient syntheses of prenostodiones containing distinct substituents at the para position of the phenyl frame underscored the scope of this methodology. The cytotoxic activities of the tert-butyl esters of prenostodione analogues were tested using six tumor cell lines. Preliminary structure-activity studies revealed the importance of the identity of the aromatic substituent at the C-4 position for cytotoxic activity. The IC50 values of these compounds were found to compare satisfactorily with those of the commercially available drugs etoposide and cisplatin. Furthermore, the compounds with, respectively, -OMe (14d) and -NO2 (14f) groups at C-4 were more selective than these control compounds in PC-3, K-562, and MCF-7 cells. Also, computational studies were carried out to determine the ADMET profiles and passive membrane permeabilities of the compounds. The results suggested the promise of 14d and 14f as hit compounds for the development of new anticancer agents.
Asunto(s)
IndolesRESUMEN
Helicobacter pylori (H. pylori) is a pathogen that can remain in the stomach of an infected person for their entire life. As a result, this leads to the development of severe gastric diseases such as gastric cancer. In addition, current therapies have several problems including antibiotics resistance. Therefore, new practical options to eliminate this bacterium, and its induced affections, are required to avoid morbidity and mortality worldwide. One strategy in the search for new drugs is to detect compounds that inhibit a limiting step in a central metabolic pathway of the pathogen of interest. In this work, we tested 55 compounds to gain insights into their possible use as new inhibitory drugs of H. pylori glucose-6-phosphate dehydrogenase (HpG6PD) activity. The compounds YGC-1; MGD-1, MGD-2; TDA-1; and JMM-3 with their respective scaffold 1,3-thiazolidine-2,4-dione; 1H-benzimidazole; 1,3-benzoxazole, morpholine, and biphenylcarbonitrile showed the best inhibitory activity (IC50 = 310, 465, 340, 204 and 304 µM, respectively). We then modeled the HpG6PD protein by homology modeling to conduct an in silico study of the chemical compounds and discovers its possible interactions with the HpG6PD enzyme. We found that compounds can be internalized at the NADP+ catalytic binding site. Hence, they probably exert a competitive inhibitory effect with NADP+ and a non-competitive or uncompetitive effect with G6P, that of the compounds binding far from the enzyme's active site. Based on these findings, the tested compounds inhibiting HpG6PD represent promising novel drug candidates against H. pylori.
Asunto(s)
Simulación por Computador , Inhibidores Enzimáticos/farmacología , Glucosafosfato Deshidrogenasa/antagonistas & inhibidores , Helicobacter pylori/enzimología , Vectores Genéticos/metabolismo , Glucosafosfato Deshidrogenasa/química , Glucosafosfato Deshidrogenasa/metabolismo , Helicobacter pylori/efectos de los fármacos , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Proteínas Recombinantes/aislamiento & purificación , Homología Estructural de ProteínaRESUMEN
Sarcoplasmic reticulum (SR) Ca2+-ATPase (SERCA) and phospholamban (PLB) are essential for intracellular Ca2+ transport in myocytes. Ca2+-dependent activation of SERCA-PLB provides a control function that regulates cytosolic and SR Ca2+ levels. Although experimental and computational studies alone have led to a greater insight into SERCA-PLB regulation, the structural mechanisms for Ca2+ binding reversing inhibition of the complex remain poorly understood. Therefore, we have performed atomistic simulations totaling 32.7 µs and cell-based intramolecular fluorescence resonance energy transfer (FRET) experiments to determine structural changes of PLB-bound SERCA in response to binding of a single Ca2+ ion. Complementary MD simulations and FRET experiments showed that open-to-closed transitions in the structure of the headpiece underlie PLB inhibition of SERCA, and binding of a single Ca2+ ion is sufficient to shift the protein population toward a structurally closed structure of the complex. Closure is accompanied by functional interactions between the N-domain ß5-ß6 loop and the A-domain and the displacement of the catalytic phosphorylation domain toward a competent structure. We propose that reversal of SERCA-PLB inhibition is achieved by stringing together its controlling modules (A-domain and loop Nß5-ß6) with catalytic elements (P-domain) to regulate function during intracellular Ca2+ signaling. We conclude that binding of a single Ca2+ is a critical mediator of allosteric signaling that dictates structural changes and motions that relieve SERCA inhibition by PLB. Understanding allosteric regulation is of paramount importance to guide therapeutic modulation of SERCA and other evolutionarily related ion-motive ATPases.
Asunto(s)
Proteínas de Unión al Calcio , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Fosforilación , Unión Proteica , Retículo Sarcoplasmático/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismoRESUMEN
Oligomerization and aggregation of γD-crystallins (HγDC) in the eye lens is one of the main causes of cataract development. To date, several congenital mutations related to this protein are known to promote the formation of aggregates. Previous studies have demonstrated that mutations in W42 residue of HγDC lead to the generation of partially unfolded intermediates that are more prone to aggregate. To understand the role of W42 in the stability of HγDC, we performed alchemical free-energy calculations and all-atom molecular dynamics simulations of different W42 mutant models. Our results suggest that substitution of W42 by small size and/or polar residues promotes HγDC denaturation due to the entry of water molecules into the hydrophobic core of the N-terminal domain. Similar behavior was observed in the C-terminal domain of HγDC when mutating the W130 residue located in a homologous position. Moreover, the exposure of the hydrophobic core residues could lead to the formation of aggregation-prone partially unfolded species. Overall, this study takes a step toward understanding the role of HγDC in cataract development.
Asunto(s)
Mutación , gamma-Cristalinas/química , gamma-Cristalinas/genética , Interacciones Hidrofóbicas e Hidrofílicas , Simulación de Dinámica Molecular , Conformación Proteica , Estabilidad Proteica , Solventes/química , Termodinámica , Agua/química , gamma-Cristalinas/metabolismoRESUMEN
Sarcolipin (SLN) mediates Ca2+ transport and metabolism in muscle by regulating the activity of the Ca2+ pump SERCA. SLN has a conserved luminal C-terminal domain that contributes to its functional divergence among homologous SERCA regulators, but the precise mechanistic role of this domain remains poorly understood. We used all-atom molecular dynamics (MD) simulations of SLN totaling 77.5 µs to show that the N- (NT) and C-terminal (CT) domains function in concert. Analysis of the MD simulations showed that serial deletions of the SLN C-terminus do not affect the stability of the peptide nor induce dissociation of SLN from the membrane but promote a gradual decrease in both the tilt angle of the transmembrane helix and the local thickness of the lipid bilayer. Mutual information analysis showed that the NT and CT domains communicate with each other in SLN and that interdomain communication is partially or completely abolished upon deletion of the conserved segment Tyr29-Tyr31 as well as by serial deletions beyond this domain. Phosphorylation of SLN at residue Thr5 also induces changes in the communication between the CT and NT domains, which thus provides additional evidence for interdomain communication within SLN. We found that interdomain communication is independent of the force field used and lipid composition, which thus demonstrates that communication between the NT and CT domains is an intrinsic functional feature of SLN. We propose the novel hypothesis that the conserved C-terminus is an essential element required for dynamic control of SLN regulatory function.
Asunto(s)
Proteolípidos , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Comunicación , Humanos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Proteolípidos/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismoRESUMEN
Nanoscale design and construction of affinity-based drug delivery systems (ADDS) is an active research area with enormous potential for the improvement of cancer treatment. For the therapeutic load of these ADDS, a promising strategy is the design of pH-sensitive prodrugs based on the construction of conjugates between adamantane and doxorubicin (Ad-Dox), which stands out as an excellent model system to obtain novel supramolecular materials. Construction of these prodrugs involves a modification of three zones of doxorubicin which in principle does not affect the action mechanism: the carbonyl group C13 (hydrazone linker), the primary alcohol neighboring the carbonyl (ester linker) and the 3' amino group of daunosamine sugar (amide linker). These modifications are aimed to improve the efficacy and reduce the systemic toxicity of the drug chemotherapy by controlling its release in cancer cells. In this work, we performed 2D NMR experiments and molecular dynamics simulations to characterize the conformational changes of three constructed prodrugs. Our results demonstrated that ring A and the daunsamine sugar of the hydrazone and amide linkers conserve the half-chair state 9H8, while the ester linker disrupts this conformation. Our study also showed that the hydrazone-linked compound (Ad-h-Dox) does not modify the conformation of the original drug and maintains cytotoxic activity. Moreover, the inclusion complex (IC) of Ad-h-Dox with ß-cyclodextrin (ßCD) generated a highly soluble platform in water, whereas the ester-linked compound (Ad-e-Dox) causes the loss of biological activity. This study proves that Ad-h-Dox prodrug can be an optimum prodrug and act as a building block for a more complex drug transport system.
Asunto(s)
Adamantano/química , Antineoplásicos/química , Doxorrubicina/química , Portadores de Fármacos/química , Profármacos/química , beta-Ciclodextrinas/química , Aminas/química , Permeabilidad de la Membrana Celular , Supervivencia Celular/efectos de los fármacos , Composición de Medicamentos , Liberación de Fármacos , Hexosaminas/química , Humanos , Hidrazonas/química , Espectroscopía de Resonancia Magnética , Conformación Molecular , Simulación de Dinámica MolecularRESUMEN
Sarcoplasmic reticulum Ca2+-ATPase (SERCA) and phospholamban (PLB) are essential components of the cardiac Ca2+ transport machinery. PLB phosphorylation at residue Ser16 (pSer16) enhances SERCA activity in the heart via an unknown structural mechanism. Here, we report a fully atomistic model of SERCA bound to phosphorylated PLB and study its structural dynamics on the microsecond time scale using all-atom molecular dynamics simulations in an explicit lipid bilayer and water environment. The unstructured N-terminal phosphorylation domain of PLB samples different orientations and covers a broad area of the cytosolic domain of SERCA but forms a stable complex mediated by pSer16 interactions with a binding site formed by SERCA residues Arg324/Lys328. PLB phosphorylation does not affect the interaction between the transmembrane regions of the two proteins; however, pSer16 stabilizes a disordered structure of the N-terminal phosphorylation domain that releases key inhibitory contacts between SERCA and PLB. We found that PLB phosphorylation is sufficient to guide the structural transitions of the cytosolic headpiece that are required to produce a competent structure of SERCA. We conclude that PLB phosphorylation serves as an allosteric molecular switch that releases inhibitory contacts and strings together the catalytic elements required for SERCA activation. This atomistic model represents a vivid atomic-resolution visualization of SERCA bound to phosphorylated PLB and provides previously inaccessible insights into the structural mechanism by which PLB phosphorylation releases SERCA inhibition in the heart.
Asunto(s)
Proteínas de Unión al Calcio/química , Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular , Fosfatidilcolinas/química , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/química , Regulación Alostérica , Sitios de Unión , Proteínas de Unión al Calcio/metabolismo , Humanos , Membrana Dobles de Lípidos/metabolismo , Resonancia Magnética Nuclear Biomolecular , Fosfatidilcolinas/metabolismo , Fosforilación , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Serina/química , Serina/metabolismo , TermodinámicaRESUMEN
Sarcoendoplasmic reticulum calcium ATPase (SERCA), a member of the P-type ATPase family of ion and lipid pumps, is responsible for the active transport of Ca2+ from the cytoplasm into the sarcoplasmic reticulum lumen of muscle cells, into the endoplasmic reticulum (ER) of non-muscle cells. X-ray crystallography has proven to be an invaluable tool in understanding the structural changes of SERCA, and more than 70 SERCA crystal structures representing major biochemical states (defined by bound ligand) have been deposited in the Protein Data Bank. Consequently, SERCA is one of the best characterized components of the calcium transport machinery in the cell. Emerging approaches in the field, including spectroscopy and molecular simulation, now help integrate and interpret this rich structural information to understand the conformational transitions of SERCA that occur during activation, inhibition, and regulation. In this review, we provide an overview of the crystal structures of SERCA, focusing on identifying metrics that facilitate structure-based categorization of major steps along the catalytic cycle. We examine the integration of crystallographic data with different biophysical approaches and computational methods to link biochemical and structural states of SERCA that are populated in the cell. Finally, we discuss the challenges and new opportunities in the field, including structural elucidation of functionally important and novel regulatory complexes of SERCA, understanding the structural basis of functional divergence among homologous SERCA regulators, and bridging the gap between basic and translational research directed toward therapeutic modulation of SERCA.