Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
PLoS Biol ; 17(10): e3000509, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31613895

RESUMEN

The Hippo signalling pathway restricts cell proliferation in animal tissues by inhibiting Yes-associated protein (YAP or YAP1) and Transcriptional Activator with a PDZ domain (TAZ or WW-domain-containing transcriptional activator [WWTR1]), coactivators of the Scalloped (Sd or TEAD) DNA-binding transcription factor. Drosophila has a single YAP/TAZ homolog named Yorkie (Yki) that is regulated by Hippo pathway signalling in response to epithelial polarity and tissue mechanics during development. Here, we show that Yki translocates to the nucleus to drive Sd-mediated cell proliferation in the ovarian follicle cell epithelium in response to mechanical stretching caused by the growth of the germline. Importantly, mechanically induced Yki nuclear localisation also requires nutritionally induced insulin/insulin-like growth factor 1 (IGF-1) signalling (IIS) via phosphatidyl inositol-3-kinase (PI3K), phosphoinositide-dependent kinase 1 (PDK1 or PDPK1), and protein kinase B (Akt or PKB) in the follicular epithelium. We find similar results in the developing Drosophila wing, where Yki becomes nuclear in the mechanically stretched cells of the wing pouch during larval feeding, which induces IIS, but translocates to the cytoplasm upon cessation of feeding in the third instar stage. Inactivating Akt prevents nuclear Yki localisation in the wing disc, while ectopic activation of the insulin receptor, PI3K, or Akt/PKB is sufficient to maintain nuclear Yki in mechanically stimulated cells of the wing pouch even after feeding ceases. Finally, IIS also promotes YAP nuclear localisation in response to mechanical cues in mammalian skin epithelia. Thus, the Hippo pathway has a physiological function as an integrator of epithelial cell polarity, tissue mechanics, and nutritional cues to control cell proliferation and tissue growth in both Drosophila and mammals.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Células Epiteliales/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Nucleares/genética , Fosfatidilinositol 3-Quinasa/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Transactivadores/genética , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/genética , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/metabolismo , Animales , Fenómenos Biomecánicos , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Polaridad Celular , Proliferación Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Células Epiteliales/citología , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Larva/citología , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Mecanotransducción Celular , Ratones , Proteínas Nucleares/metabolismo , Folículo Ovárico/citología , Folículo Ovárico/crecimiento & desarrollo , Folículo Ovárico/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Transactivadores/metabolismo , Alas de Animales/citología , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo , Proteínas Señalizadoras YAP
2.
EMBO Rep ; 21(4): e49700, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32030856

RESUMEN

Epithelial cells undergo cortical rounding at the onset of mitosis to enable spindle orientation in the plane of the epithelium. In cuboidal epithelia in culture, the adherens junction protein E-cadherin recruits Pins/LGN/GPSM2 and Mud/NuMA to orient the mitotic spindle. In the pseudostratified columnar epithelial cells of Drosophila, septate junctions recruit Mud/NuMA to orient the spindle, while Pins/LGN/GPSM2 is surprisingly dispensable. We show that these pseudostratified epithelial cells downregulate E-cadherin as they round up for mitosis. Preventing cortical rounding by inhibiting Rho-kinase-mediated actomyosin contractility blocks downregulation of E-cadherin during mitosis. Mitotic activation of Rho-kinase depends on the RhoGEF ECT2/Pebble and its binding partners RacGAP1/MgcRacGAP/CYK4/Tum and MKLP1/KIF23/ZEN4/Pav. Cell cycle control of these Rho activators is mediated by the Aurora A and B kinases, which act redundantly during mitotic rounding. Thus, in Drosophila pseudostratified epithelia, disruption of adherens junctions during mitosis necessitates planar spindle orientation by septate junctions to maintain epithelial integrity.


Asunto(s)
Uniones Adherentes , Huso Acromático , Animales , Drosophila/genética , Células Epiteliales , Mitosis
3.
Development ; 145(5)2018 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-29440303

RESUMEN

Animal cells are thought to sense mechanical forces via the transcriptional co-activators YAP (or YAP1) and TAZ (or WWTR1), the sole Drosophila homolog of which is named Yorkie (Yki). In mammalian cells in culture, artificial mechanical forces induce nuclear translocation of YAP and TAZ. Here, we show that physiological mechanical strain can also drive nuclear localisation of Yki and activation of Yki target genes in the Drosophila follicular epithelium. Mechanical strain activates Yki by stretching the apical domain, reducing the concentration of apical Crumbs, Expanded, Kibra and Merlin, and reducing apical Hippo kinase dimerisation. Overexpressing Hippo kinase to induce ectopic activation in the cytoplasm is sufficient to prevent Yki nuclear localisation even in flattened follicle cells. Conversely, blocking Hippo signalling in warts clones causes Yki nuclear localisation even in columnar follicle cells. We find no evidence for involvement of other pathways, such as Src42A kinase, in regulation of Yki. Finally, our results in follicle cells appear generally applicable to other tissues, as nuclear translocation of Yki is also readily detectable in other flattened epithelial cells such as the peripodial epithelium of the wing imaginal disc, where it promotes cell flattening.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Estrés Mecánico , Alas de Animales/embriología , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo/genética , Núcleo Celular/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Discos Imaginales/embriología , Discos Imaginales/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Mecanotransducción Celular/fisiología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Transporte de Proteínas/genética , Transducción de Señal/genética , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Alas de Animales/metabolismo , Proteínas Señalizadoras YAP
4.
Methods Cell Biol ; 185: 35-48, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38556450

RESUMEN

Childhood cancer is a major cause of death in developed countries, and while treatments and survival rates have improved, long-term side effects remain a challenge. The genetic component of pediatric tumors and their aggressive progression, makes the study of childhood cancer a complex area of research. Here, we introduce the fruit fly Drosophila melanogaster as study model. We emphasize its numerous advantages, including binary gene expression systems that enable precise control over the timing and location of gene expression manipulation, the capacity to combine multiple genes associated with cancer or the testing of human cancer variants within a live, intact animal. As an illustrative example, we focus on the Drosophila cancer paradigm which involves medically relevant genes, the Notch and PI3K/Akt signaling pathways. We describe how this cancer paradigm allows assessing two critical aspects of tumorigenesis during juvenile stages: (1) viability (do animals with particular cancer mutations survive into adulthood?), and (2) tumor burden (what percentage of animals bearing the cancer mutations actually develop cancer and what is the extent of the tumor?). We highlight the potential of Drosophila as a molecular therapeutic tool for drug screening and drug repurposing of medicines already approved to treat other diseases in children, thereby accelerating the potential translation of results into humans. This preclinical animal model sustains huge potential and is cost-effective. It allows screening of thousands of compounds and genes at a relatively low cost and human efforts, opening innovative venues to explore more effective and safer treatments of childhood cancer.


Asunto(s)
Drosophila melanogaster , Neoplasias , Niño , Animales , Humanos , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Drosophila , Modelos Animales
5.
Cells Dev ; 168: 203719, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34242843

RESUMEN

Adherens junctions are a defining feature of all epithelial cells, providing cell-cell adhesion and contractile ring formation that is essential for cell and tissue morphology. In Drosophila, adherens junctions are concentrated between the apical and basolateral plasma membrane domains, defined by aPKC-Par6-Baz and Lgl/Dlg/Scrib, respectively. Whether adherens junctions contribute to apical-basal polarization itself has been unclear because neuroblasts exhibit apical-basal polarization of aPKC-Par6-Baz and Lgl in the absence of adherens junctions. Here we show that, upon disruption of adherens junctions in epithelial cells, apical polarity determinants such as aPKC can still segregate from basolateral Lgl, but lose their sharp boundaries and also overlap with Dlg and Scrib - similar to neuroblasts. In addition, control of apical versus basolateral domain size is lost, along with control of cell shape, in the absence of adherens junctions. Manipulating the levels of apical Par3/Baz or basolateral Lgl polarity determinants in experiments and in computer simulations confirms that adherens junctions provide a 'picket fence' diffusion barrier that restricts the spread of polarity determinants along the membrane to enable precise domain size control. Movement of adherens junctions in response to mechanical forces during morphogenetic change thus enables spontaneous adjustment of apical versus basolateral domain size as an emergent property of the polarising system.


Asunto(s)
Uniones Adherentes , Proteínas de Drosophila , Uniones Adherentes/metabolismo , Animales , Polaridad Celular/fisiología , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Células Epiteliales
6.
Sci Rep ; 10(1): 11454, 2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32632122

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

7.
Sci Rep ; 8(1): 4601, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29545526

RESUMEN

RhoGAP proteins control the precise regulation of the ubiquitous small RhoGTPases. The Drosophila Crossveinless-c (Cv-c) RhoGAP is homologous to the human tumour suppressor proteins Deleted in Liver Cancer 1-3 (DLC1-3) sharing an identical arrangement of SAM, GAP and START protein domains. Here we analyse in Drosophila the requirement of each Cv-c domain to its function and cellular localization. We show that the basolateral membrane association of Cv-c is key for its epithelial function and find that the GAP domain targeted to the membrane can perform its RhoGAP activity independently of the rest of the protein, implying the SAM and START domains perform regulatory roles. We propose the SAM domain has a repressor effect over the GAP domain that is counteracted by the START domain, while the basolateral localization is mediated by a central, non-conserved Cv-c region. We find that DLC3 and Cv-c expression in the Drosophila ectoderm cause identical effects. In contrast, DLC1 is inactive but becomes functional if the central non-conserved DLC1 domain is substituted for that of Cv-c. Thus, these RhoGAP proteins are functionally equivalent, opening up the use of Drosophila as an in vivo model to analyse pharmacologically and genetically the human DLC proteins.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Drosophila/crecimiento & desarrollo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Embrión no Mamífero/metabolismo , Proteínas Activadoras de GTPasa/química , Proteínas Activadoras de GTPasa/genética , Humanos , Hibridación Fluorescente in Situ , Túbulos de Malpighi/metabolismo , Dominios Proteicos , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/genética
8.
Cell Rep ; 22(7): 1639-1646, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29444419

RESUMEN

Epithelial cells are polarized along their apical-basal axis by the action of the small GTPase Cdc42, which is known to activate the aPKC kinase at the apical domain. However, loss of aPKC kinase activity was reported to have only mild effects on epithelial cell polarity. Here, we show that Cdc42 also activates a second kinase, Pak1, to specify apical domain identity in Drosophila and mammalian epithelia. aPKC and Pak1 phosphorylate an overlapping set of polarity substrates in kinase assays. Inactivating both aPKC kinase activity and the Pak1 kinase leads to a complete loss of epithelial polarity and morphology, with cells losing markers of apical polarization such as Crumbs, Par3/Bazooka, or ZO-1. This function of Pak1 downstream of Cdc42 is distinct from its role in regulating integrins or E-cadherin. Our results define a conserved dual-kinase mechanism for the control of apical membrane identity in epithelia.


Asunto(s)
Membrana Celular/metabolismo , Polaridad Celular , Drosophila melanogaster/citología , Drosophila melanogaster/enzimología , Células Epiteliales/citología , Células Epiteliales/enzimología , Quinasas p21 Activadas/metabolismo , Secuencia de Aminoácidos , Animales , Células CACO-2 , Proteínas de Drosophila/metabolismo , Humanos , Ratones , Fosforilación , Proteína Quinasa C/metabolismo , Interferencia de ARN , Quinasas p21 Activadas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA