Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Hum Mutat ; 41(5): 884-905, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32027066

RESUMEN

The most common genetic cause of neonatal diabetes and hyperinsulinism is pathogenic variants in ABCC8 and KCNJ11. These genes encode the subunits of the ß-cell ATP-sensitive potassium channel, a key component of the glucose-stimulated insulin secretion pathway. Mutations in the two genes cause dysregulated insulin secretion; inactivating mutations cause an oversecretion of insulin, leading to congenital hyperinsulinism, whereas activating mutations cause the opposing phenotype, diabetes. This review focuses on variants identified in ABCC8 and KCNJ11, the phenotypic spectrum and the treatment implications for individuals with pathogenic variants.


Asunto(s)
Hiperinsulinismo Congénito/genética , Diabetes Mellitus/genética , Células Secretoras de Insulina/metabolismo , Mutación , Canales de Potasio de Rectificación Interna/genética , Receptores de Sulfonilureas/genética , Hiperinsulinismo Congénito/diagnóstico , Diabetes Mellitus/diagnóstico , Mutación con Ganancia de Función , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Recién Nacido , Mutación con Pérdida de Función
2.
Biochem Soc Trans ; 47(6): 1843-1855, 2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31697318

RESUMEN

It is accepted that insulin-secreting ß-cells release insulin in response to glucose even in the absence of functional ATP-sensitive K+ (KATP)-channels, which play a central role in a 'consensus model' of secretion broadly accepted and widely reproduced in textbooks. A major shortcoming of this consensus model is that it ignores any and all anionic mechanisms, known for more than 40 years, to modulate ß-cell electrical activity and therefore insulin secretion. It is now clear that, in addition to metabolically regulated KATP-channels, ß-cells are equipped with volume-regulated anion (Cl-) channels (VRAC) responsive to glucose concentrations in the range known to promote electrical activity and insulin secretion. In this context, the electrogenic efflux of Cl- through VRAC and other Cl- channels known to be expressed in ß-cells results in depolarization because of an outwardly directed Cl- gradient established, maintained and regulated by the balance between Cl- transporters and channels. This review will provide a succinct historical perspective on the development of a complex hypothesis: Cl- transporters and channels modulate insulin secretion in response to nutrients.


Asunto(s)
Cloruros/metabolismo , Células Secretoras de Insulina/fisiología , Canales Iónicos/metabolismo , Modelos Biológicos , Animales , Humanos , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Transporte Iónico
4.
J Biol Chem ; 286(10): 8481-8492, 2011 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-21199866

RESUMEN

The ATP-binding cassette (ABC) transporter ABCB6 is a mitochondrial porphyrin transporter that activates porphyrin biosynthesis. ABCB6 lacks a canonical mitochondrial targeting sequence but reportedly traffics to other cellular compartments such as the plasma membrane. How ABCB6 reaches these destinations is unknown. In this study, we show that endogenous ABCB6 is glycosylated in multiple cell types, indicating trafficking through the endoplasmic reticulum (ER), and has only one atypical site for glycosylation (NXC) in its amino terminus. ABCB6 remained glycosylated when the highly conserved cysteine (Cys-8) was substituted with serine to make a consensus site, NXS. However, this substitution blocked ER exit and produced ABCB6 degradation, which was mostly reversed by the proteasomal inhibitor MG132. The amino terminus of ABCB6 has an additional highly conserved ER luminal cysteine (Cys-26). When Cys-26 was mutated alone or in combination with Cys-8, it also resulted in instability and ER retention. Further analysis revealed that these two cysteines form a disulfide bond. We discovered that other ABC transporters with an amino terminus in the ER had similarly configured conserved cysteines. This analysis led to the discovery of a disease-causing mutation in the sulfonylurea receptor 1 (SUR1)/ABCC8 from a patient with hyperinsulinemic hypoglycemia. The mutant allele only contains a mutation in a conserved amino-terminal cysteine, producing SUR1 that fails to reach the cell surface. These results suggest that for ABC transporters the propensity to form a disulfide bond in the ER defines a unique checkpoint that determines whether a protein is ER-retained.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Disulfuros/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas Mitocondriales/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Receptores de Droga/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Alelos , Sustitución de Aminoácidos , Animales , Errores Innatos del Metabolismo de los Carbohidratos/genética , Errores Innatos del Metabolismo de los Carbohidratos/metabolismo , Inhibidores de Cisteína Proteinasa/farmacología , Retículo Endoplásmico/genética , Glicosilación , Células HEK293 , Humanos , Hiperinsulinismo/genética , Hiperinsulinismo/metabolismo , Hipoglucemia/genética , Hipoglucemia/metabolismo , Células K562 , Leupeptinas/farmacología , Ratones , Proteínas Mitocondriales/genética , Mutación Missense , Células 3T3 NIH , Canales de Potasio de Rectificación Interna/genética , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma , Estructura Terciaria de Proteína , Transporte de Proteínas/genética , Receptores de Droga/genética , Receptores de Sulfonilureas
5.
Endocr Rev ; 29(3): 265-91, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18436707

RESUMEN

An explosion of work over the last decade has produced insight into the multiple hereditary causes of a nonimmunological form of diabetes diagnosed most frequently within the first 6 months of life. These studies are providing increased understanding of genes involved in the entire chain of steps that control glucose homeostasis. Neonatal diabetes is now understood to arise from mutations in genes that play critical roles in the development of the pancreas, of beta-cell apoptosis and insulin processing, as well as the regulation of insulin release. For the basic researcher, this work is providing novel tools to explore fundamental molecular and cellular processes. For the clinician, these studies underscore the need to identify the genetic cause underlying each case. It is increasingly clear that the prognosis, therapeutic approach, and genetic counseling a physician provides must be tailored to a specific gene in order to provide the best medical care.


Asunto(s)
Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/fisiopatología , Enfermedades del Recién Nacido/genética , Enfermedades del Recién Nacido/fisiopatología , Animales , Diabetes Mellitus Tipo 1/terapia , Humanos , Hiperglucemia/genética , Hiperglucemia/fisiopatología , Hiperglucemia/terapia , Recién Nacido , Enfermedades del Recién Nacido/terapia
6.
Nat Med ; 11(3): 320-7, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15735652

RESUMEN

Increased glucose production is a hallmark of type 2 diabetes and alterations in lipid metabolism have a causative role in its pathophysiology. Here we postulate that physiological increments in plasma fatty acids can be sensed within the hypothalamus and that this sensing is required to balance their direct stimulatory action on hepatic gluconeogenesis. In the presence of physiologically-relevant increases in the levels of plasma fatty acids, negating their central action on hepatic glucose fluxes through (i) inhibition of the hypothalamic esterification of fatty acids, (ii) genetic deletion (Sur1-deficient mice) of hypothalamic K(ATP) channels or pharmacological blockade (K(ATP) blocker) of their activation by fatty acids, or (iii) surgical resection of the hepatic branch of the vagus nerve led to a marked increase in liver glucose production. These findings indicate that a physiological elevation in circulating lipids can be sensed within the hypothalamus and that a defect in hypothalamic lipid sensing disrupts glucose homeostasis.


Asunto(s)
Diabetes Mellitus Tipo 2/fisiopatología , Ácidos Grasos no Esterificados/sangre , Glucosa/metabolismo , Hipotálamo/fisiología , Hígado/metabolismo , Animales , Coenzima A Ligasas/antagonistas & inhibidores , Grasas de la Dieta/administración & dosificación , Emulsiones Grasas Intravenosas/administración & dosificación , Emulsiones Grasas Intravenosas/farmacología , Glucosa-6-Fosfatasa/antagonistas & inhibidores , Glucosa-6-Fosfatasa/metabolismo , Gliburida/farmacología , Homeostasis/fisiología , Inyecciones Intraventriculares , Hígado/efectos de los fármacos , Masculino , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de Rectificación Interna/fisiología , Ratas , Ratas Sprague-Dawley , Triazenos/farmacología , Vagotomía
7.
PLoS One ; 17(12): e0279560, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36580474

RESUMEN

The risk of type-2 diabetes and cardiovascular disease is higher in subjects with metabolic syndrome, a cluster of clinical conditions characterized by obesity, impaired glucose metabolism, hyperinsulinemia, hyperlipidemia and hypertension. Diuretics are frequently used to treat hypertension in these patients, however, their use has long been associated with poor metabolic outcomes which cannot be fully explained by their diuretic effects. Here, we show that mice lacking the diuretic-sensitive Na+K+2Cl-cotransporter-1 Nkcc1 (Slc12a2) in insulin-secreting ß-cells of the pancreatic islet (Nkcc1ßKO) have reduced in vitro insulin responses to glucose. This is associated with islet hypoplasia at the expense of fewer and smaller ß-cells. Remarkably, Nkcc1ßKO mice excessively gain weight and progressive metabolic syndrome when fed a standard chow diet ad libitum. This is characterized by impaired hepatic insulin receptor activation and altered lipid metabolism. Indeed, overweight Nkcc1ßKO but not lean mice had fasting and fed hyperglycemia, hypertriglyceridemia and non-alcoholic steatohepatitis. Notably, fasting hyperinsulinemia was detected earlier than hyperglycemia, insulin resistance, glucose intolerance and increased hepatic de novo gluconeogenesis. Therefore, our data provide evidence supporting the novel hypothesis that primary ß-cell defects related to Nkcc1-regulated intracellular Cl-homeostasis and ß-cell growth can result in the development of metabolic syndrome shedding light into additional potential mechanisms whereby chronic diuretic use may have adverse effects on metabolic homeostasis in susceptible individuals.


Asunto(s)
Hiperglucemia , Hiperinsulinismo , Hipertensión , Resistencia a la Insulina , Células Secretoras de Insulina , Síndrome Metabólico , Ratones , Animales , Síndrome Metabólico/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Hiperinsulinismo/metabolismo , Hiperglucemia/metabolismo , Diuréticos , Hipertensión/metabolismo
8.
Nature ; 434(7036): 1026-31, 2005 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-15846348

RESUMEN

Obesity is the driving force behind the worldwide increase in the prevalence of type 2 diabetes mellitus. Hyperglycaemia is a hallmark of diabetes and is largely due to increased hepatic gluconeogenesis. The medial hypothalamus is a major integrator of nutritional and hormonal signals, which play pivotal roles not only in the regulation of energy balance but also in the modulation of liver glucose output. Bidirectional changes in hypothalamic insulin signalling therefore result in parallel changes in both energy balance and glucose metabolism. Here we show that activation of ATP-sensitive potassium (K(ATP)) channels in the mediobasal hypothalamus is sufficient to lower blood glucose levels through inhibition of hepatic gluconeogenesis. Finally, the infusion of a K(ATP) blocker within the mediobasal hypothalamus, or the surgical resection of the hepatic branch of the vagus nerve, negates the effects of central insulin and halves the effects of systemic insulin on hepatic glucose production. Consistent with these results, mice lacking the SUR1 subunit of the K(ATP) channel are resistant to the inhibitory action of insulin on gluconeogenesis. These findings suggest that activation of hypothalamic K(ATP) channels normally restrains hepatic gluconeogenesis, and that any alteration within this central nervous system/liver circuit can contribute to diabetic hyperglycaemia.


Asunto(s)
Adenosina Trifosfato/metabolismo , Gluconeogénesis , Glucosa/biosíntesis , Hipotálamo/metabolismo , Hígado/metabolismo , Canales de Potasio/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Glucosa/metabolismo , Hiperinsulinismo/metabolismo , Hiperinsulinismo/fisiopatología , Insulina/metabolismo , Hígado/inervación , Masculino , Ratones , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/deficiencia , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Canales de Potasio/química , Canales de Potasio/genética , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Droga , Receptores de Sulfonilureas , Nervio Vago/fisiología
9.
PLoS One ; 15(12): e0242749, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33264332

RESUMEN

Cystic fibrosis (CF) is due to mutations in the CF-transmembrane conductance regulator (CFTR) and CF-related diabetes (CFRD) is its most common co-morbidity, affecting ~50% of all CF patients, significantly influencing pulmonary function and longevity. Yet, the complex pathogenesis of CFRD remains unclear. Two non-mutually exclusive underlying mechanisms have been proposed in CFRD: i) damage of the endocrine cells secondary to the severe exocrine pancreatic pathology and ii) intrinsic ß-cell impairment of the secretory response in combination with other factors. The later has proven difficult to determine due to low expression of CFTR in ß-cells, which results in the general perception that this Cl-channel does not participate in the modulation of insulin secretion or the development of CFRD. The objective of the present work is to demonstrate CFTR expression at the molecular and functional levels in insulin-secreting ß-cells in normal human islets, where it seems to play a role. Towards this end, we have used immunofluorescence confocal and immunofluorescence microscopy, immunohistochemistry, RT-qPCR, Western blotting, pharmacology, electrophysiology and insulin secretory studies in normal human, rat and mouse islets. Our results demonstrate heterogeneous CFTR expression in human, mouse and rat ß-cells and provide evidence that pharmacological inhibition of CFTR influences basal and stimulated insulin secretion in normal mouse islets but not in islets lacking this channel, despite being detected by electrophysiological means in ~30% of ß-cells. Therefore, our results demonstrate a potential role for CFTR in the pancreatic ß-cell secretory response suggesting that intrinsic ß-cell dysfunction may also participate in the pathogenesis of CFRD.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Células Secretoras de Insulina/metabolismo , Adulto , Anciano , Animales , Anticuerpos/metabolismo , Antígenos/metabolismo , Línea Celular , Regulador de Conductancia de Transmembrana de Fibrosis Quística/inmunología , Femenino , Humanos , Lactante , Secreción de Insulina , Masculino , Ratones , Persona de Mediana Edad , Ratas , Reproducibilidad de los Resultados , Adulto Joven
10.
N Engl J Med ; 355(5): 456-66, 2006 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-16885549

RESUMEN

BACKGROUND: The ATP-sensitive potassium (K(ATP)) channel, composed of the beta-cell proteins sulfonylurea receptor (SUR1) and inward-rectifying potassium channel subunit Kir6.2, is a key regulator of insulin release. It is inhibited by the binding of adenine nucleotides to subunit Kir6.2, which closes the channel, and activated by nucleotide binding or hydrolysis on SUR1, which opens the channel. The balance of these opposing actions determines the low open-channel probability, P(O), which controls the excitability of pancreatic beta cells. We hypothesized that activating mutations in ABCC8, which encodes SUR1, cause neonatal diabetes. METHODS: We screened the 39 exons of ABCC8 in 34 patients with permanent or transient neonatal diabetes of unknown origin. We assayed the electrophysiologic activity of mutant and wild-type K(ATP) channels. RESULTS: We identified seven missense mutations in nine patients. Four mutations were familial and showed vertical transmission with neonatal and adult-onset diabetes; the remaining mutations were not transmitted and not found in more than 300 patients without diabetes or with early-onset diabetes of similar genetic background. Mutant channels in intact cells and in physiologic concentrations of magnesium ATP had a markedly higher P(O) than did wild-type channels. These overactive channels remained sensitive to sulfonylurea, and treatment with sulfonylureas resulted in euglycemia. CONCLUSIONS: Dominant mutations in ABCC8 accounted for 12 percent of cases of neonatal diabetes in the study group. Diabetes results from a newly discovered mechanism whereby the basal magnesium-nucleotide-dependent stimulatory action of SUR1 on the Kir pore is elevated and blockade by sulfonylureas is preserved.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Diabetes Mellitus/genética , Mutación Missense , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio/genética , Receptores de Droga/genética , Transportadoras de Casetes de Unión a ATP/antagonistas & inhibidores , Transportadoras de Casetes de Unión a ATP/metabolismo , Peso al Nacer , Discapacidades del Desarrollo/complicaciones , Complicaciones de la Diabetes , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/metabolismo , Femenino , Heterocigoto , Humanos , Hipoglucemiantes/uso terapéutico , Recién Nacido , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Masculino , Linaje , Canales de Potasio/metabolismo , Canales de Potasio de Rectificación Interna/antagonistas & inhibidores , Canales de Potasio de Rectificación Interna/metabolismo , Receptores de Droga/antagonistas & inhibidores , Receptores de Droga/metabolismo , Compuestos de Sulfonilurea/uso terapéutico , Receptores de Sulfonilureas , Tolbutamida/farmacología
12.
Sci Rep ; 7(1): 17231, 2017 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-29222447

RESUMEN

Cystic fibrosis (CF)-related diabetes (CFRD) is thought to result from beta-cell injury due in part to pancreas exocrine damage and lipofibrosis. CFRD pancreata exhibit reduced islet density and altered cellular composition. To investigate a possible etiology, we tested the hypothesis that such changes are present in CF pancreata before the development of lipofibrosis. We evaluated pancreas and islet morphology in tissues from very young CF children (<4 years of age), and adult patients with CF and CFRD. The relative number of beta-cells in young CF tissues was reduced by 50% or more when compared to age-matched controls. Furthermore, young CF tissues displayed significantly smaller insulin-positive areas, lower proportion of beta-cells positive for the proliferation marker Ki67 or the ductal marker CK19 vs. control subjects, and islet inflammatory cell infiltrates, independently of the severity of the exocrine lesion and in the absence of amyloid deposits. CFRD pancreata exhibited greater islet injury with further reduction in islet density, decreased relative beta-cell number, and presence of amyloid deposits. Together, these results strongly suggest that an early deficiency in beta-cell number in infants with CF may contribute to the development of glucose intolerance in the CF pediatric population, and to CFRD, later in life.


Asunto(s)
Fibrosis Quística/patología , Complicaciones de la Diabetes/patología , Islotes Pancreáticos/patología , Proliferación Celular , Preescolar , Fibrosis Quística/metabolismo , Complicaciones de la Diabetes/metabolismo , Femenino , Prueba de Tolerancia a la Glucosa , Humanos , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Masculino , Páncreas Exocrino/metabolismo , Páncreas Exocrino/patología
13.
Sci Rep ; 7(1): 1732, 2017 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-28496181

RESUMEN

Intracellular chloride concentration ([Cl-]i) in pancreatic ß-cells is kept above electrochemical equilibrium due to the predominant functional presence of Cl- loaders such as the Na+K+2Cl- co-transporter 1 (Slc12a2) over Cl-extruders of unidentified nature. Using molecular cloning, RT-PCR, Western blotting, immunolocalization and in vitro functional assays, we establish that the "neuron-specific" K+Cl- co-transporter 2 (KCC2, Slc12a5) is expressed in several endocrine cells of the pancreatic islet, including glucagon secreting α-cells, but particularly in insulin-secreting ß-cells, where we provide evidence for its role in the insulin secretory response. Three KCC2 splice variants were identified: the formerly described KCC2a and KCC2b along with a novel one lacking exon 25 (KCC2a-S25). This new variant is undetectable in brain or spinal cord, the only and most abundant known sources of KCC2. Inhibition of KCC2 activity in clonal MIN6 ß-cells increases basal and glucose-stimulated insulin secretion and Ca2+ uptake in the presence of glibenclamide, an inhibitor of the ATP-dependent potassium (KATP)-channels, thus suggesting a possible mechanism underlying KCC2-dependent insulin release. We propose that the long-time considered "neuron-specific" KCC2 co-transporter is expressed in pancreatic islet ß-cells where it modulates Ca2+-dependent insulin secretion.


Asunto(s)
Secreción de Insulina , Neuronas/metabolismo , Simportadores/metabolismo , Empalme Alternativo/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Calcio/metabolismo , Línea Celular , Glucosa/farmacología , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Canales KATP/metabolismo , Ratones , Piridazinas , Simportadores/química , Simportadores/genética , Tiazoles , Cotransportadores de K Cl
14.
Diabetes ; 54(10): 2946-51, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16186397

RESUMEN

The mechanisms involved in the release of glucagon in response to hypoglycemia are unclear. Proposed mechanisms include the activation of the autonomic nervous system via glucose-sensing neurons in the central nervous system, via the regulation of glucagon secretion by intra-islet insulin and zinc concentrations, or via direct ionic control, all mechanisms that involve high-affinity sulfonylurea receptor/inwardly rectifying potassium channel-type ATP-sensitive K(+) channels. Patients with congenital hyperinsulinism provide a unique physiological model to understand glucagon regulation. In this study, we compare serum glucagon responses to hyperinsulinemic hypoglycemia versus nonhyperinsulinemic hypoglycemia. In the patient group (n = 20), the mean serum glucagon value during hyperinsulinemic hypoglycemia was 17.6 +/- 5.7 ng/l compared with 59.4 +/- 7.8 ng/l in the control group (n = 15) with nonhyperinsulinemic hypoglycemia (P < 0.01). There was no difference between the serum glucagon responses in children with diffuse, focal, and diazoxide-responsive forms of hyperinsulinism. The mean serum epinephrine and norepinephrine concentrations in the hyperinsulinemic group were 2,779 +/- 431 pmol/l and 2.9 +/- 0.7 nmol/l and appropriately rose despite the blunted glucagon response. In conclusion, the loss of ATP-sensitive K(+) channels and or elevated intraislet insulin cannot explain the blunted glucagon release in all patients with congenital hyperinsulinism. Other possible mechanisms such as the suppressive effect of prolonged hyperinsulinemia on alpha-cell secretion should be considered.


Asunto(s)
Glucagón/sangre , Homeostasis , Hormonas/sangre , Hiperglucemia/sangre , Hiperinsulinismo/congénito , Transportadoras de Casetes de Unión a ATP/genética , Adenosina Trifosfato/farmacología , Preescolar , Diazóxido/uso terapéutico , Epinefrina/sangre , Ácidos Grasos no Esterificados/sangre , Femenino , Humanos , Hiperinsulinismo/sangre , Hiperinsulinismo/genética , Lactante , Insulina/análisis , Insulina/sangre , Islotes Pancreáticos/química , Cuerpos Cetónicos/sangre , Masculino , Mutación , Norepinefrina/sangre , Canales de Potasio/genética , Canales de Potasio/fisiología , Canales de Potasio de Rectificación Interna/genética , Receptores de Droga/genética , Receptores de Sulfonilureas
15.
Endocrinology ; 146(12): 5514-21, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16123162

RESUMEN

Glucagon is a potent counterregulatory hormone that opposes the action of insulin in controlling glycemia. The cellular mechanisms by which pancreatic alpha-cell glucagon secretion occurs in response to hypoglycemia are poorly known. SUR1/K(IR)6.2-type ATP-sensitive K(+) (K(ATP)) channels have been implicated in the glucagon counterregulatory response at central and peripheral levels, but their role is not well understood. In this study, we examined hypoglycemia-induced glucagon secretion in vitro in isolated islets and in vivo using Sur1KO mice lacking neuroendocrine-type K(ATP) channels and paired wild-type (WT) controls. Sur1KO mice fed ad libitum have normal glucagon levels and mobilize hepatic glycogen in response to exogenous glucagon but exhibit a blunted glucagon response to insulin-induced hypoglycemia. Glucagon release from Sur1KO and WT islets is increased at 2.8 mmol/liter glucose and suppressed by increasing glucose concentrations. WT islets increase glucagon secretion approximately 20-fold when challenged with 0.1 mmol/liter glucose vs. approximately 2.7-fold for Sur1KO islets. Glucagon release requires Ca(2+) and is inhibited by nifedipine. Consistent with a regulatory interaction between K(ATP) channels and intra-islet zinc-insulin, WT islets exhibit an inverse correlation between beta-cell secretion and glucagon release. Glibenclamide stimulated insulin secretion and reduced glucagon release in WT islets but was without effect on secretion from Sur1KO islets. The results indicate that loss of alpha-cell K(ATP) channels uncouples glucagon release from inhibition by beta-cells and reveals a role for K(ATP) channels in the regulation of glucagon release by low glucose.


Asunto(s)
Adenosina Trifosfato/metabolismo , Glucagón/metabolismo , Hipoglucemia/metabolismo , Canales de Potasio/metabolismo , Transportadoras de Casetes de Unión a ATP , Animales , Glucemia/metabolismo , Glucagón/farmacología , Células Secretoras de Glucagón/metabolismo , Hipoglucemia/inducido químicamente , Hipoglucemiantes , Técnicas In Vitro , Insulina/metabolismo , Secreción de Insulina , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/deficiencia , Canales de Potasio de Rectificación Interna , Receptores de Droga , Receptores de Sulfonilureas
16.
Diabetes ; 51(12): 3440-9, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12453898

RESUMEN

Whereas the loss of ATP-sensitive K(+) channel (K(ATP) channel) activity in human pancreatic beta-cells causes severe hypoglycemia in certain forms of hyperinsulinemic hypoglycemia, similar channel loss in sulfonylurea receptor-1 (SUR1) and Kir6.2 null mice yields a milder phenotype that is characterized by normoglycemia, unless the animals are stressed. While investigating potential compensatory mechanisms, we found that incretins, specifically glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP), can increase the cAMP content of Sur1KO islets but do not potentiate glucose-stimulated insulin release. This impairment is secondary to a restriction in the ability of Sur1KO beta-cells to sense cAMP correctly. Potentiation does not appear to require cAMP-activated protein kinase (PKA) because H-89 (N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide) and KT5720, inhibitors of PKA, do not affect stimulation by GLP-1, GIP, or exendin-4 in wild-type islets, although they block phosphorylation of cAMP-response element-binding protein. The impaired incretin response in Sur1KO islets is specific; the stimulation of insulin release by other modulators, including mastoparan and activators of protein kinase C, is conserved. The results suggest that the defect responsible for the loss of cAMP-induced potentiation of insulin secretion is PKA independent. We hypothesize that a reduced release of insulin in response to incretins may contribute to the unexpected normoglycemic phenotype of Sur1KO mice versus the pronounced hypoglycemia seen in neonates with loss of K(ATP) channel activity.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Carbazoles , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , AMP Cíclico/fisiología , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Canales de Potasio de Rectificación Interna , Canales de Potasio/fisiología , Receptores de Droga/fisiología , Sulfonamidas , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Activación Enzimática/fisiología , Inhibidores Enzimáticos/farmacología , Glucagón , Péptido 1 Similar al Glucagón , Péptidos Similares al Glucagón , Glucosa/farmacología , Indoles/farmacología , Secreción de Insulina , Isoquinolinas/farmacología , Ratones , Ratones Noqueados/genética , Fragmentos de Péptidos/fisiología , Canales de Potasio/deficiencia , Canales de Potasio/genética , Proteína Quinasa C/metabolismo , Pirroles/farmacología , Receptores de Droga/deficiencia , Receptores de Droga/genética , Valores de Referencia , Receptores de Sulfonilureas
17.
Diabetes ; 53 Suppl 3: S104-12, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15561897

RESUMEN

Advances in understanding the overall structural features of inward rectifiers and ATP-binding cassette (ABC) transporters are providing novel insight into the architecture of ATP-sensitive K+ channels (KATP channels) (KIR6.0/SUR)4. The structure of the K(IR) pore has been modeled on bacterial K+ channels, while the lipid-A exporter, MsbA, provides a template for the MDR-like core of sulfonylurea receptor (SUR)-1. TMD0, an NH2-terminal bundle of five alpha-helices found in SURs, binds to and activates KIR6.0. The adjacent cytoplasmic L0 linker serves a dual function, acting as a tether to link the MDR-like core to the KIR6.2/TMD0 complex and exerting bidirectional control over channel gating via interactions with the NH2-terminus of the KIR. Homology modeling of the SUR1 core offers the possibility of defining the glibenclamide/sulfonylurea binding pocket. Consistent with 30-year-old studies on the pharmacology of hypoglycemic agents, the pocket is bipartite. Elements of the COOH-terminal half of the core recognize a hydrophobic group in glibenclamide, adjacent to the sulfonylurea moiety, to provide selectivity for SUR1, while the benzamido group appears to be in proximity to L0 and the KIR NH2-terminus.


Asunto(s)
Adenosina Trifosfato/fisiología , Canales de Potasio/química , Canales de Potasio/fisiología , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Humanos , Hipoglucemiantes/farmacología , Modelos Moleculares , Canales de Potasio/efectos de los fármacos , Canales de Potasio de Rectificación Interna/química , Canales de Potasio de Rectificación Interna/efectos de los fármacos , Canales de Potasio de Rectificación Interna/fisiología , Conformación Proteica
18.
Diabetes ; 52(9): 2403-10, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12941782

RESUMEN

Recessive mutations of sulfonylurea receptor 1 (SUR1) and potassium inward rectifier 6.2 (Kir6.2), the two adjacent genes on chromosome 11p that comprise the beta-cell plasma membrane ATP-sensitive K(+) (K(ATP)) channels, are responsible for the most common form of congenital hyperinsulinism in children. The present study was undertaken to identify the genetic defect in a family with dominantly inherited hyperinsulinism affecting five individuals in three generations. Clinical tests were carried out in three of the patients using acute insulin responses (AIRs) to intravenous stimuli to localize the site of defect in insulin regulation. The affected individuals showed abnormal positive calcium AIR, normal negative leucine AIR, subnormal positive glucose AIR, and impaired tolbutamide AIR. This AIR pattern suggested a K(ATP) channel defect because it resembled that seen in children with recessive hyperinsulinism due to two common SUR1 mutations, g3992-9a and delPhe1388. Genetic linkage to the K(ATP) locus was established using intragenic polymorphisms. Mutation analysis identified a novel trinucleotide deletion in SUR1 exon 34 that results in the loss of serine 1387. Studies of delSer1387 in COSm6 cells confirmed that the expressed mutant protein assembles with Kir6.2 and trafficks to the plasma membrane, but it had no (86)Rb efflux ion transport activity. These results indicate that hyperinsulinism in this family is caused by a SUR1 mutation that is expressed dominantly rather than recessively.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Hiperinsulinismo/genética , Mutación Puntual , Canales de Potasio de Rectificación Interna , Canales de Potasio/genética , Receptores de Droga/genética , Adulto , Salud de la Familia , Femenino , Expresión Génica , Genes Dominantes , Haplotipos , Humanos , Hiperinsulinismo/congénito , Lactante , Recién Nacido , Insulina/metabolismo , Secreción de Insulina , Islotes Pancreáticos/metabolismo , Masculino , Linaje , Polimorfismo Genético , Receptores de Sulfonilureas
19.
FEBS Lett ; 579(7): 1602-6, 2005 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-15757648

RESUMEN

To explore how the sulfonylurea receptor (SUR1) is involved in docking and fusion of insulin granules, dynamic motion of single insulin secretory granules near the plasma membrane was examined in SUR1 knock-out (Sur1KO) beta-cells by total internal reflection fluorescence microscopy. Sur1KO beta-cells exhibited a marked reduction in the number of fusion events from previously docked granules. However, the number of docked granules declined during stimulation as a consequence of the release of docked granules into the cytoplasm vs. fusion with the plasma membrane. Thus, the impaired docking and fusion results in decreased insulin exocytosis from Sur1KO beta-cells.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Exocitosis , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Vesículas Secretoras/metabolismo , Animales , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Insulina/análisis , Secreción de Insulina , Islotes Pancreáticos/ultraestructura , Ratones , Ratones Noqueados , Microscopía Fluorescente , Canales de Potasio de Rectificación Interna , Receptores de Droga , Vesículas Secretoras/química , Vesículas Secretoras/genética , Receptores de Sulfonilureas
20.
Mol Endocrinol ; 16(5): 1097-107, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-11981044

RESUMEN

The sulfonylurea receptor 1 (SUR1) plays a key role in regulation of insulin secretion in pancreatic beta-cells. In this study we investigated the mechanism for tissue-specific expression of the SUR1 gene. A -138/-20 fragment exhibited basal promoter activity while the -660/-20 fragment contained a regulatory element for tissue-specific expression of the mouse SUR1 gene. A pancreatic beta-cell-specific transcription factor, BETA2 (beta-cell E box transcription factor)/NeuroD, enhanced the promoter activity of the -660/-20 fragment in cooperation with E47. Coexpression of a dominant negative mutant of BETA2/NeuroD, BETA2(1-233), repressed the promoter activity of the -660/-20 fragment. BETA2/NeuroD bound specifically to the E3 element located at -141. The E3 sequence in a heterologous context conferred transactivation by BETA2/NeuroD in HeLa and HIT cells. Mutation of E3 eliminated the stimulatory effect of BETA2/NeuroD. Unlike BETA2/NeuroD, neurogenin 3 (ngn3) could not activate the E3 element in HeLa cells. Overexpression of ngn3 concomitantly increased expression of BETA2/NeuroD and SUR1 in HIT cells but not in HeLa cells. These results indicate that BETA2/NeuroD induces tissue-specific expression of the SUR1 gene through the E3 element. These results also suggest that E3 is specific for BETA2/NeuroD, and the stimulatory effect of ngn3 in HIT cells may require factors specifically expressed in HIT cells.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Proteínas de Unión al ADN/farmacología , Canales de Potasio de Rectificación Interna , Canales de Potasio/genética , Receptores de Droga/genética , Transactivadores/farmacología , Activación Transcripcional , Animales , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Sitios de Unión , Proteínas de Unión al ADN/metabolismo , Expresión Génica , Células HeLa , Humanos , Insulinoma , Ratones , Datos de Secuencia Molecular , Mutagénesis , Neoplasias Pancreáticas , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Canales de Potasio/metabolismo , Regiones Promotoras Genéticas , Ratas , Receptores de Droga/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Receptores de Sulfonilureas , Transactivadores/metabolismo , Transfección , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA