RESUMEN
Two-dimensional (2D) semiconductors possess promise for the development of field-effect transistors (FETs) at the ultimate scaling limit due to their strong gate electrostatics. However, proper FET scaling requires reduction of both channel length (LCH) and contact length (LC), the latter of which has remained a challenge due to increased current crowding at the nanoscale. Here, we investigate Au contacts to monolayer MoS2 FETs with LCH down to 100 nm and LC down to 20 nm to evaluate the impact of contact scaling on FET performance. Au contacts are found to display a â¼2.5× reduction in the ON-current, from 519 to 206 µA/µm, when LC is scaled from 300 to 20 nm. It is our belief that this study is warranted to ensure an accurate representation of contact effects at and beyond the technology nodes currently occupied by silicon.