Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; : 107408, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38796066

RESUMEN

The Eyes Absent (Eya) proteins were first identified as co-activators of the Six homeobox family of transcription factors and are critical in embryonic development. These proteins are also re-expressed in cancers after development is complete, where they drive tumor progression. We have previously shown that the Eya3 N-terminal domain (NTD) contains Ser/Thr phosphatase activity through an interaction with the protein phosphatase 2A (PP2A)-B55α holoenzyme, and that this interaction increases the half-life of Myc through pT58 dephosphorylation. Here we showed that Eya3 directly interacted with the NTD of Myc, recruiting PP2A-B55α to Myc. We also showed that Eya3 increased the Ser/Thr phosphatase activity of PP2A-B55α but not PP2A-B56α. Furthermore, we demonstrated that the NTD (∼250 amino acids) of Eya3 was completely disordered, and it used a 38-residue segment to interact with B55α. In addition, knockdown and phosphoproteomic analyses demonstrated that Eya3 and B55α affected highly similar phosphosite motifs with a preference for Ser/Thr followed by Pro, consistent with Eya3's apparent Ser/Thr phosphatase activity being mediated through its interaction with PP2A-B55α. Intriguingly, mutating this Pro to other amino acids in a Myc peptide dramatically increased dephosphorylation by PP2A. Not surprisingly, MycP59A, a naturally occurring mutation hotspot in several cancers, enhanced Eya3-PP2A-B55α mediated dephosphorylation of pT58 on Myc, leading to increased Myc stability and cell proliferation, underscoring the critical role of this phosphosite in regulating Myc stability.

2.
Proc Natl Acad Sci U S A ; 119(12): e2113535119, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35290123

RESUMEN

Patients with melanoma receiving drugs targeting BRAFV600E and mitogen-activated protein (MAP) kinase kinases 1 and 2 (MEK1/2) invariably develop resistance and face continued progression. Based on preclinical studies, intermittent treatment involving alternating periods of drug withdrawal and rechallenge has been proposed as a method to delay the onset of resistance. The beneficial effect of intermittent treatment has been attributed to drug addiction, where drug withdrawal reduces the viability of resistant cells due to MAP kinase pathway hyperactivation. However, the mechanistic basis of the intermittent effect is incompletely understood. We show that intermittent treatment with the BRAFV600E inhibitor, LGX818/encorafenib, suppresses growth compared with continuous treatment in human melanoma cells engineered to express BRAFV600E, p61-BRAFV600E, or MEK2C125 oncogenes. Analysis of the BRAFV600E-overexpressing cells shows that, while drug addiction clearly occurs, it fails to account for the advantageous effect of intermittent treatment. Instead, growth suppression is best explained by resensitization during periods of drug removal, followed by cell death after drug readdition. Continuous treatment leads to transcriptional responses prominently associated with chemoresistance in melanoma. By contrast, cells treated intermittently reveal a subset of transcripts that reverse expression between successive cycles of drug removal and rechallenge and include mediators of cell invasiveness and the epithelial-to-mesenchymal transition. These transcripts change during periods of drug removal by adaptive switching, rather than selection pressure. Resensitization occurs against a background of sustained expression of melanoma resistance genes, producing a transcriptome distinct from that of the initial drug-naive cell state. We conclude that phenotypic plasticity leading to drug resensitization can underlie the beneficial effect of intermittent treatment.


Asunto(s)
Melanoma , Proteínas Proto-Oncogénicas B-raf , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Humanos , Sistema de Señalización de MAP Quinasas , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/patología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(20): 10797-10805, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32371482

RESUMEN

Human catechol O-methyltransferase (COMT) has emerged as a model for understanding enzyme-catalyzed methyl transfer from S-adenosylmethionine (AdoMet) to small-molecule catecholate acceptors. Mutation of a single residue (tyrosine 68) behind the methyl-bearing sulfonium of AdoMet was previously shown to impair COMT activity by interfering with methyl donor-acceptor compaction within the activated ground state of the wild type enzyme [J. Zhang, H. J. Kulik, T. J. Martinez, J. P. Klinman, Proc. Natl. Acad. Sci. U.S.A. 112, 7954-7959 (2015)]. This predicts the involvement of spatially defined protein dynamical effects that further tune the donor/acceptor distance and geometry as well as the electrostatics of the reactants. Here, we present a hydrogen/deuterium exchange (HDX)-mass spectrometric study of wild type and mutant COMT, comparing temperature dependences of HDX against corresponding kinetic and cofactor binding parameters. The data show that the impaired Tyr68Ala mutant displays similar breaks in Arrhenius plots of both kinetic and HDX properties that are absent in the wild type enzyme. The spatial resolution of HDX below a break point of 15-20 °C indicates changes in flexibility across ∼40% of the protein structure that is confined primarily to the periphery of the AdoMet binding site. Above 20 °C, Tyr68Ala behaves more like WT in HDX, but its rate and enthalpic barrier remain significantly altered. The impairment of catalysis by Tyr68Ala can be understood in the context of a mutationally induced alteration in protein motions that becomes manifest along and perpendicular to the primary group transfer coordinate.


Asunto(s)
Catecol O-Metiltransferasa/química , Secuencias de Aminoácidos , Dominio Catalítico , Catecol O-Metiltransferasa/genética , Catecol O-Metiltransferasa/metabolismo , Humanos , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio , Simulación de Dinámica Molecular , Mutación
4.
Nat Methods ; 16(7): 595-602, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31249422

RESUMEN

Hydrogen deuterium exchange mass spectrometry (HDX-MS) is a powerful biophysical technique being increasingly applied to a wide variety of problems. As the HDX-MS community continues to grow, adoption of best practices in data collection, analysis, presentation and interpretation will greatly enhance the accessibility of this technique to nonspecialists. Here we provide recommendations arising from community discussions emerging out of the first International Conference on Hydrogen-Exchange Mass Spectrometry (IC-HDX; 2017). It is meant to represent both a consensus viewpoint and an opportunity to stimulate further additions and refinements as the field advances.


Asunto(s)
Medición de Intercambio de Deuterio/métodos , Espectrometría de Masas/métodos , Análisis de Datos , Concentración de Iones de Hidrógeno
5.
Proc Natl Acad Sci U S A ; 116(31): 15463-15468, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31311868

RESUMEN

Conformational selection by small molecules expands inhibitory possibilities for protein kinases. Nuclear magnetic resonance (NMR) measurements of the mitogen-activated protein (MAP) kinase ERK2 have shown that activation by dual phosphorylation induces global motions involving exchange between two states, L and R. We show that ERK inhibitors Vertex-11e and SCH772984 exploit the small energetic difference between L and R to shift the equilibrium in opposing directions. An X-ray structure of active 2P-ERK2 complexed with AMP-PNP reveals a shift in the Gly-rich loop along with domain closure to position the nucleotide in a more catalytically productive conformation relative to inactive 0P-ERK2:ATP. X-ray structures of 2P-ERK2 complexed with Vertex-11e or GDC-0994 recapitulate this closure, which is blocked in a complex with a SCH772984 analog. Thus, the L→R shift in 2P-ERK2 is associated with movements needed to form a competent active site. Solution measurements by hydrogen-exchange mass spectrometry (HX-MS) reveal distinct binding interactions for Vertex-11e, GDC-0994, and AMP-PNP with active vs. inactive ERK2, where the extent of HX protection correlates with R state formation. Furthermore, Vertex-11e and SCH772984 show opposite effects on HX near the activation loop. Consequently, these inhibitors differentially affect MAP kinase phosphatase activity toward 2P-ERK2. We conclude that global motions in ERK2 reflect conformational changes at the active site that promote productive nucleotide binding and couple with changes at the activation loop to allow control of dephosphorylation by conformationally selective inhibitors.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Quinasas MAP Reguladas por Señal Extracelular/química , Inhibidores de Proteínas Quinasas/farmacología , Regulación Alostérica/efectos de los fármacos , Sitios de Unión , Biocatálisis , Dominio Catalítico , Cristalografía por Rayos X , Medición de Intercambio de Deuterio , Humanos , Espectrometría de Masas , Modelos Biológicos , Nucleótidos/química , Nucleótidos/metabolismo , Fosforilación/efectos de los fármacos , Estructura Secundaria de Proteína
6.
Biochemistry ; 59(29): 2698-2706, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32643366

RESUMEN

The activation loop segment in protein kinases is a common site for regulatory phosphorylation. In extracellular signal-regulated kinase 2 (ERK2), dual phosphorylation and conformational rearrangement of the activation loop accompany enzyme activation. X-ray structures show the active conformation to be stabilized by multiple ion pair interactions between phosphorylated threonine and tyrosine residues in the loop and six arginine residues in the kinase core. Despite the extensive salt bridge network, nuclear magnetic resonance Carr-Purcell-Meiboom-Gill relaxation dispersion experiments show that the phosphorylated activation loop is conformationally mobile on a microsecond to millisecond time scale. The dynamics of the loop match those of previously reported global exchange within the kinase core region and surrounding the catalytic site that have been found to facilitate productive nucleotide binding. Mutations in the core region that alter these global motions also alter the dynamics of the activation loop. Conversely, mutations in the activation loop perturb the global exchange within the kinase core. Together, these findings provide evidence for coupling between motions in the activation loop and those surrounding the catalytic site in the active state of the kinase. Thus, the activation loop segment in dual-phosphorylated ERK2 is not held statically in the active X-ray conformation but instead undergoes exchange between conformers separated by a small energetic barrier, serving as part of a dynamic allosteric network controlling nucleotide binding and catalytic function.


Asunto(s)
Proteína Quinasa 1 Activada por Mitógenos/química , Animales , Cristalografía por Rayos X , Activación Enzimática , Modelos Moleculares , Movimiento (Física) , Resonancia Magnética Nuclear Biomolecular , Fosforilación , Conformación Proteica , Ratas
7.
J Chem Inf Model ; 60(2): 821-832, 2020 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-31714778

RESUMEN

Protein kinases (PKs) are allosteric enzymes that play an essential role in signal transduction by regulating a variety of key cellular processes. Most PKs suffer conformational rearrangements upon phosphorylation that strongly enhance the catalytic activity. Generally, it involves the movement of the phosphorylated loop toward the active site and the rotation of the whole C-terminal lobe. However, not all kinases undergo such a large configurational change: The MAPK extracellular signal-regulated protein kinases ERK1 and ERK2 achieve a 50 000 fold increase in kinase activity with only a small motion of the C-terminal region. In the present work, we used a combination of molecular simulation tools to characterize the conformational landscape of ERK2 in the active (phosphorylated) and inactive (unphosphorylated) states in solution in agreement with NMR experiments. We show that the chemical reaction barrier is strongly dependent on ATP conformation and that the "active" low-barrier configuration is subtly regulated by phosphorylation, which stabilizes a key salt bridge between the conserved Lys52 and Glu69 belonging to helix-C and promotes binding of a second Mg ion. Our study highlights that the on-off switch embedded in the kinase fold can be regulated by small, medium, and large conformational changes.


Asunto(s)
Proteína Quinasa 1 Activada por Mitógenos/química , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Secuencia Conservada , Disulfuros/química , Activación Enzimática , Simulación de Dinámica Molecular , Fosforilación , Conformación Proteica
8.
Mol Cell Proteomics ; 17(4): 550-564, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29255136

RESUMEN

The BRAF-MKK1/2-ERK1/2 pathway is constitutively activated in response to oncogenic mutations of BRAF in many cancer types, including melanoma. Although small molecules that inhibit oncogenic BRAF and MAP kinase kinase (MKK)1/2 have been successful in clinical settings, resistance invariably develops. High affinity inhibitors of ERK1/2 have been shown in preclinical studies to bypass the resistance of melanoma and colon cancer cells to BRAF and MKK1/2 inhibitors, and are thus promising additions to current treatment protocols. But still unknown is how molecular responses to ERK1/2 inhibitors compare with inhibitors currently in clinical use. Here, we employ quantitative phosphoproteomics to evaluate changes in phosphorylation in response to the ERK inhibitors, SCH772984 and GDC0994, and compare these to the clinically used MKK1/2 inhibitor, trametinib. Combined with previous studies measuring phosphoproteomic responses to the MKK1/2 inhibitor, selumetinib, and the BRAF inhibitor, vemurafenib, the outcomes reveal key insights into pathway organization, phosphorylation specificity and off-target effects of these inhibitors. The results demonstrate linearity in signaling from BRAF to MKK1/2 and from MKK1/2 to ERK1/2. They identify likely targets of direct phosphorylation by ERK1/2, as well as inhibitor off-targets, including an off-target regulation of the p38α mitogen activated protein kinase (MAPK) pathway by the MKK1/2 inhibitor, trametinib, at concentrations used in the literature but higher than in vivo drug concentrations. In addition, several known phosphorylation targets of ERK1/2 are insensitive to MKK or ERK inhibitors, revealing variability in canonical pathway responses between different cell systems. By comparing multiple inhibitors targeted to multiple tiers of protein kinases in the MAPK pathway, we gain insight into regulation and new targets of the oncogenic BRAF driver pathway in cancer cells, and a useful approach for evaluating the specificity of drugs and drug candidates.


Asunto(s)
Indazoles/farmacología , Melanoma/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación/efectos de los fármacos , Piperazinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Piridonas/farmacología , Pirimidinonas/farmacología , Línea Celular Tumoral/metabolismo , Humanos , Transducción de Señal/efectos de los fármacos
9.
Genes Dev ; 26(7): 693-704, 2012 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-22474261

RESUMEN

Argonaute proteins (Ago1-4) are essential components of the microRNA-induced silencing complex and play important roles in both microRNA biogenesis and function. Although Ago2 is the only one with the slicer activity, it is not clear whether the slicer activity is a universally critical determinant for Ago2's function in mammals. Furthermore, functional specificities associated with different Argonautes remain elusive. Here we report that microRNAs are randomly sorted to individual Argonautes in mammals, independent of the slicer activity. When both Ago1 and Ago2, but not either Ago1 or Ago2 alone, are ablated in the skin, the global expression of microRNAs is significantly compromised and it causes severe defects in skin morphogenesis. Surprisingly, Ago3 is able to load microRNAs efficiently in the absence of Ago1 and Ago2, despite a significant loss of global microRNA expression. Quantitative analyses reveal that Ago2 interacts with a majority of microRNAs (60%) in the skin, compared with Ago1 (30%) and Ago3 (<10%). This distribution is highly correlated with the abundance of each Argonaute, as quantified by shotgun proteomics. The quantitative correlation between Argonautes and their associated microRNAs is conserved in human cells. Finally, we measure the absolute expression of Argonaute proteins and determine that their copy number is ~1.4 × 10(5) to 1.7 × 10(5) molecules per cell. Together, our results reveal a quantitative picture for microRNA activity in mammals.


Asunto(s)
Proteínas Argonautas/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Regulación del Desarrollo de la Expresión Génica , Animales , Proteínas Argonautas/deficiencia , Proteínas Argonautas/genética , Proliferación Celular , Factores Eucarióticos de Iniciación/deficiencia , Factores Eucarióticos de Iniciación/genética , Melanoma/genética , Melanoma/metabolismo , Ratones , Ratones Noqueados , MicroARNs/metabolismo , Piel/citología , Piel/metabolismo
10.
Mol Cell ; 37(4): 455-6, 2010 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-20188664

RESUMEN

In this issue of Molecular Cell, Hoshi et al. (2010) report two examples in which small molecule inhibitors are rendered ineffective when their kinase targets are involved in protein-protein interactions, highlighting differences between in vivo and in vitro inhibition kinetics.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Proteína Quinasa C/química , Proteína Quinasa C/metabolismo , Inhibidores de Proteínas Quinasas/química , Proteínas de Anclaje a la Quinasa A/genética , Canal de Potasio KCNQ2/metabolismo , Unión Proteica , Proteína Quinasa C/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora
11.
Mol Cell ; 34(1): 115-31, 2009 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-19362540

RESUMEN

Melanoma and other cancers harbor oncogenic mutations in the protein kinase B-Raf, which leads to constitutive activation and dysregulation of MAP kinase signaling. In order to elucidate molecular determinants responsible for B-Raf control of cancer phenotypes, we present a method for phosphoprotein profiling, using negative ionization mass spectrometry to detect phosphopeptides based on their fragment ion signature caused by release of PO(3)(-). The method provides an alternative strategy for phosphoproteomics, circumventing affinity enrichment of phosphopeptides and isotopic labeling of samples. Ninety phosphorylation events were regulated by oncogenic B-Raf signaling, based on their responses to treating melanoma cells with MKK1/2 inhibitor. Regulated phosphoproteins included known signaling effectors and cytoskeletal regulators. We investigated MINERVA/FAM129B, a target belonging to a protein family with unknown category and function, and established the importance of this protein and its MAP kinase-dependent phosphorylation in controlling melanoma cell invasion into three-dimensional collagen matrix.


Asunto(s)
Melanoma/metabolismo , Proteómica , Proteínas Proto-Oncogénicas B-raf/metabolismo , Línea Celular Tumoral , Humanos , Sistema de Señalización de MAP Quinasas , Espectrometría de Masas , Mutación , Fosfoproteínas/análisis , Fosfoproteínas/química , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/fisiología , Fosforilación , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/fisiología , Especificidad por Sustrato
12.
Mol Cell Proteomics ; 14(6): 1599-615, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25850435

RESUMEN

Inhibitors of oncogenic B-RAF(V600E) and MKK1/2 have yielded remarkable responses in B-RAF(V600E)-positive melanoma patients. However, the efficacy of these inhibitors is limited by the inevitable onset of resistance. Despite the fact that these inhibitors target the same pathway, combination treatment with B-RAF(V600E) and MKK1/2 inhibitors has been shown to improve both response rates and progression-free survival in B-RAF(V600E) melanoma patients. To provide insight into the molecular nature of the combinatorial response, we used quantitative mass spectrometry to characterize the inhibitor-dependent phosphoproteome of human melanoma cells treated with the B-RAF(V600E) inhibitor PLX4032 (vemurafenib) or the MKK1/2 inhibitor AZD6244 (selumetinib). In three replicate experiments, we quantified changes at a total of 23,986 phosphosites on 4784 proteins. This included 1317 phosphosites that reproducibly decreased in response to at least one inhibitor. Phosphosites that responded to both inhibitors grouped into networks that included the nuclear pore complex, growth factor signaling, and transcriptional regulators. Although the majority of phosphosites were responsive to both inhibitors, we identified 16 sites that decreased only in response to PLX4032, suggesting rare instances where oncogenic B-RAF signaling occurs in an MKK1/2-independent manner. Only two phosphosites were identified that appeared to be uniquely responsive to AZD6244. When cells were treated with the combination of AZD6244 and PLX4032 at subsaturating concentrations (30 nm), responses at nearly all phosphosites were additive. We conclude that AZD6244 does not substantially widen the range of phosphosites inhibited by PLX4032 and that the benefit of the drug combination is best explained by their additive effects on suppressing ERK1/2 signaling. Comparison of our results to another recent ERK1/2 phosphoproteomics study revealed a surprising degree of variability in the sensitivity of phosphosites to MKK1/2 inhibitors in human cell lines, revealing unexpected cell specificity in the molecular responses to pathway activation.


Asunto(s)
MAP Quinasa Quinasa 1/antagonistas & inhibidores , MAP Quinasa Quinasa 2/antagonistas & inhibidores , Fosfoproteínas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Bencimidazoles/farmacología , Línea Celular Tumoral , Humanos , Indoles/farmacología , Melanoma , Proteómica , Sulfonamidas/farmacología , Vemurafenib
13.
Proc Natl Acad Sci U S A ; 111(7): 2506-11, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24550275

RESUMEN

Protein motions control enzyme catalysis through mechanisms that are incompletely understood. Here NMR (13)C relaxation dispersion experiments were used to monitor changes in side-chain motions that occur in response to activation by phosphorylation of the MAP kinase ERK2. NMR data for the methyl side chains on Ile, Leu, and Val residues showed changes in conformational exchange dynamics in the microsecond-to-millisecond time regime between the different activity states of ERK2. In inactive, unphosphorylated ERK2, localized conformational exchange was observed among methyl side chains, with little evidence for coupling between residues. Upon dual phosphorylation by MAP kinase kinase 1, the dynamics of assigned methyls in ERK2 were altered throughout the conserved kinase core, including many residues in the catalytic pocket. The majority of residues in active ERK2 fit to a single conformational exchange process, with kex ≈ 300 s(-1) (kAB ≈ 240 s(-1)/kBA ≈ 60 s(-1)) and pA/pB ≈ 20%/80%, suggesting global domain motions involving interconversion between two states. A mutant of ERK2, engineered to enhance conformational mobility at the hinge region linking the N- and C-terminal domains, also induced two-state conformational exchange throughout the kinase core, with exchange properties of kex ≈ 500 s(-1) (kAB ≈ 15 s(-1)/kBA ≈ 485 s(-1)) and pA/pB ≈ 97%/3%. Thus, phosphorylation and activation of ERK2 lead to a dramatic shift in conformational exchange dynamics, likely through release of constraints at the hinge.


Asunto(s)
Activación Enzimática/fisiología , Proteína Quinasa 1 Activada por Mitógenos/química , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Modelos Moleculares , Animales , Escherichia coli , Espectroscopía de Resonancia Magnética , Fosforilación , Estructura Terciaria de Proteína , Ratas
14.
Acc Chem Res ; 48(4): 1106-14, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25803188

RESUMEN

Protein kinases are ubiquitous enzymes with critical roles in cellular processes and pathology. As a result, researchers have studied their activity and regulatory mechanisms extensively. Thousands of X-ray structures give snapshots of the architectures of protein kinases in various states of activation and ligand binding. However, the extent of and manner by which protein motions and conformational dynamics underlie the function and regulation of these important enzymes is not well understood. Nuclear magnetic resonance (NMR) methods provide complementary information about protein conformation and dynamics in solution. However, until recently, the large size of these enzymes prevented researchers from using these methods with kinases. Developments in transverse relaxation-optimized spectroscopy (TROSY)-based techniques and more efficient isotope labeling strategies are now allowing researchers to carry out NMR studies on full-length protein kinases. In this Account, we describe recent insights into the role of dynamics in protein kinase regulation and catalysis that have been gained from NMR measurements of chemical shift changes and line broadening, residual dipolar couplings, and relaxation. These findings show strong associations between protein motion and events that control kinase activity. Dynamic and conformational changes occurring at ligand binding sites and other regulatory domains of these proteins propagate to conserved kinase core regions that mediate catalytic function. NMR measurements of slow time scale (microsecond to millisecond) motions also reveal that kinases carry out global exchange processes that synchronize multiple residues and allosteric interconversion between conformational states. Activating covalent modifications or ligand binding to form the Michaelis complex can induce these global processes. Inhibitors can also exploit the exchange properties of kinases by using conformational selection to form dynamically quenched states. These investigations have revealed that kinases are highly dynamic enzymes, whose regulation by interdomain interactions, ligand binding, and covalent modifications involve changes in motion and conformational equilibrium in a manner that can be correlated with function. Thus, NMR provides a unique window into the role of protein dynamics in kinase regulation and catalysis with important implications for drug design.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular , Proteínas Quinasas/metabolismo , Termodinámica , Biocatálisis , Modelos Moleculares , Conformación Proteica , Proteínas Quinasas/química
15.
Biochemistry ; 54(1): 22-31, 2015 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-25350931

RESUMEN

The mitogen-activated protein (MAP) kinase pathway is a target for anticancer therapy, validated using inhibitors of B-Raf and MAP kinase kinase (MKK) 1 and 2. Clinical outcomes show a high frequency of acquired resistance in patient tumors, involving upregulation of activity of the MAP kinase, extracellular signal-regulated kinase (ERK) 1 and 2. Thus, inhibitors for ERK1/2 are potentially important for targeted therapeutics against cancer. The structures and potencies of different ERK inhibitors have been published, but their kinetic mechanisms have not been characterized. Here we perform enzyme kinetic studies on six representative ERK inhibitors, with potencies varying from 100 pM to 20 µM. Compounds with significant biological activity (IC50 < 100 nM) that inhibit in the subnanomolar range (Vertex-11e and SCH772984) display slow-onset inhibition and represent the first inhibitors of ERK2 known to demonstrate slow dissociation rate constants (values of 0.2 and 1.1 h(-1), respectively). Furthermore, we demonstrate using kinetic competition assays that Vertex-11e binds with differing affinities to ERK2 in its inactive, unphosphorylated and active, phosphorylated forms. Finally, two-dimensional heteronuclear multiple-quantum correlation nuclear magnetic resonance experiments reveal that distinct conformational states are formed in complexes of Vertex-11e with inactive and active ERK2. Importantly, two conformers interconvert in equilibrium in the active ERK2 apoenzyme, but Vertex-11e strongly shifts the equilibrium completely to one conformer. Thus, a high-affinity, slow dissociation inhibitor stabilizes different enzyme conformations depending on the activity state of ERK2 and reveals properties of conformational selection toward the active kinase.


Asunto(s)
Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 1 Activada por Mitógenos/química , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/química , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Animales , Sitios de Unión/fisiología , Relación Dosis-Respuesta a Droga , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Inhibidores de Proteínas Quinasas/metabolismo , Estructura Secundaria de Proteína , Ratas , Factores de Tiempo
16.
Biochemistry ; 54(28): 4307-19, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-26132046

RESUMEN

Resonance assignments are the first step in most NMR studies of protein structure, function, and dynamics. Standard protein assignment methods employ through-bond backbone experiments on uniformly (13)C/(15)N-labeled proteins. For larger proteins, this through-bond assignment procedure often breaks down due to rapid relaxation and spectral overlap. The challenges involved in studies of larger proteins led to efficient methods for (13)C labeling of side chain methyl groups, which have favorable relaxation properties and high signal-to-noise. These methyls are often still assigned by linking them to the previously assigned backbone, thus limiting the applications for larger proteins. Here, a structure-based procedure is described for assignment of (13)C(1)H3-labeled methyls by comparing distance information obtained from three-dimensional methyl-methyl nuclear Overhauser effect (NOE) spectroscopy with the X-ray structure. The Ile, Leu, or Val (ILV) methyl type is determined by through-bond experiments, and the methyl-methyl NOE data are analyzed in combination with the known structure. A hierarchical approach was employed that maps the largest observed "NOE-methyl cluster" onto the structure. The combination of identification of ILV methyl type with mapping of the NOE-methyl clusters greatly simplifies the assignment process. This method was applied to the inactive and active forms of the 42-kDa ILV (13)C(1)H3-methyl labeled extracellular signal-regulated kinase 2 (ERK2), leading to assignment of 60% of the methyls, including 90% of Ile residues. A series of ILV to Ala mutants were analyzed, which helped confirm the assignments. These assignments were used to probe the local and long-range effects of ligand binding to inactive and active ERK2.


Asunto(s)
Proteína Quinasa 1 Activada por Mitógenos/química , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/metabolismo , Animales , Dominio Catalítico , Cristalografía por Rayos X , Isoleucina/análisis , Leucina/análisis , Metilación , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Nucleótidos/metabolismo , Péptidos/química , Péptidos/metabolismo , Unión Proteica , Conformación Proteica , Ratas , Valina/análisis
17.
J Biol Chem ; 289(34): 23546-56, 2014 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-25006254

RESUMEN

Protein kinases are regulated by a large number of mechanisms that vary from one kinase to another. However, a fundamental activation mechanism shared by all protein kinases is phosphorylation of a conserved activation loop threonine residue. This is achieved in many cases via autophosphorylation. The mechanism and structural basis for autophosphorylation are not clear and are in fact enigmatic because this phosphorylation occurs when the kinase is in its inactive conformation. Unlike most protein kinases, MAP kinases are not commonly activated by autophosphorylation but rather by MEK-dependent phosphorylation. Here we show that p38ß, a p38 isoform that is almost identical to p38α, is exceptional and spontaneously autoactivates by autophosphorylation. We identified a 13-residue-long region composed of part of the αG-helix and the MAPK insert that triggers the intrinsic autophosphorylation activity of p38ß. When inserted into p38α, this fragment renders it spontaneously active in vitro and in mammalian cells. We further found that an interaction between the N terminus and a particular region of the C-terminal extension suppresses the intrinsic autophosphorylation of p38ß in mammalian cells. Thus, this study identified the structural motif responsible for the unique autophosphorylation capability of p38ß and the motif inhibiting this activity in living cells. It shows that the MAPK insert and C-terminal extension, structural motifs that are unique to MAPKs, play a critical role in controlling autophosphorylation.


Asunto(s)
Isoenzimas/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Secuencia de Aminoácidos , Biocatálisis , Células HEK293 , Humanos , Isoenzimas/química , Datos de Secuencia Molecular , Fosforilación , Homología de Secuencia de Aminoácido , Proteínas Quinasas p38 Activadas por Mitógenos/química
18.
J Biol Chem ; 289(7): 4490-502, 2014 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-24375412

RESUMEN

Programmed cell death protein 5 (PDCD5) has been proposed to act as a pro-apoptotic factor and tumor suppressor. However, the mechanisms underlying its apoptotic function are largely unknown. A proteomics search for binding partners of phosducin-like protein, a co-chaperone for the cytosolic chaperonin containing tailless complex polypeptide 1 (CCT), revealed a robust interaction between PDCD5 and CCT. PDCD5 formed a complex with CCT and ß-tubulin, a key CCT-folding substrate, and specifically inhibited ß-tubulin folding. Cryo-electron microscopy studies of the PDCD5·CCT complex suggested a possible mechanism of inhibition of ß-tubulin folding. PDCD5 bound the apical domain of the CCTß subunit, projecting above the folding cavity without entering it. Like PDCD5, ß-tubulin also interacts with the CCTß apical domain, but a second site is found at the sensor loop deep within the folding cavity. These orientations of PDCD5 and ß-tubulin suggest that PDCD5 sterically interferes with ß-tubulin binding to the CCTß apical domain and inhibits ß-tubulin folding. Given the importance of tubulins in cell division and proliferation, PDCD5 might exert its apoptotic function at least in part through inhibition of ß-tubulin folding.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Chaperonina con TCP-1/metabolismo , Proteínas de Neoplasias/metabolismo , Pliegue de Proteína , Tubulina (Proteína)/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Línea Celular Tumoral , Chaperonina con TCP-1/genética , Humanos , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteínas de Neoplasias/genética , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Tubulina (Proteína)/genética
19.
Mol Biol Cell ; 35(3): ar31, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38117590

RESUMEN

The WRAMP structure is a protein network associated with tail-end actomyosin contractility, membrane retraction, and directional persistence during cell migration. A marker of WRAMP structures is melanoma cell adhesion molecule (MCAM) which dynamically polarizes to the cell rear. However, factors that mediate MCAM polarization are still unknown. In this study, BioID using MCAM as bait identifies the ERM family proteins, moesin, ezrin, and radixin, as WRAMP structure components. We also present a novel image analysis pipeline, Protein Polarity by Percentile ("3P"), which classifies protein polarization using machine learning and facilitates quantitative analysis. Using 3P, we find that depletion of moesin, and to a lesser extent ezrin, decreases the proportion of cells with polarized MCAM. Furthermore, although copolarized MCAM and ERM proteins show high spatial overlap, 3P identifies subpopulations with ERM proteins closer to the cell periphery. Live-cell imaging confirms that MCAM and ERM protein polarization is tightly coordinated, but ERM proteins enrich at the cell edge first. Finally, deletion of a juxtamembrane segment in MCAM previously shown to promote ERM protein interactions impedes MCAM polarization. Our findings highlight the requirement for ERM proteins in recruitment of MCAM to WRAMP structures and an advanced computational tool to characterize protein polarization.


Asunto(s)
Antígeno CD146 , Melanoma , Humanos , Citoesqueleto de Actina/metabolismo , Antígeno CD146/metabolismo , Membrana Celular/metabolismo , Movimiento Celular , Melanoma/metabolismo
20.
Elife ; 122024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38537148

RESUMEN

Activation of the extracellular signal-regulated kinase-2 (ERK2) by phosphorylation has been shown to involve changes in protein dynamics, as determined by hydrogen-deuterium exchange mass spectrometry (HDX-MS) and NMR relaxation dispersion measurements. These can be described by a global exchange between two conformational states of the active kinase, named 'L' and 'R,' where R is associated with a catalytically productive ATP-binding mode. An ATP-competitive ERK1/2 inhibitor, Vertex-11e, has properties of conformation selection for the R-state, revealing movements of the activation loop that are allosterically coupled to the kinase active site. However, the features of inhibitors important for R-state selection are unknown. Here, we survey a panel of ATP-competitive ERK inhibitors using HDX-MS and NMR and identify 14 new molecules with properties of R-state selection. They reveal effects propagated to distal regions in the P+1 and helix αF segments surrounding the activation loop, as well as helix αL16. Crystal structures of inhibitor complexes with ERK2 reveal systematic shifts in the Gly loop and helix αC, mediated by a Tyr-Tyr ring stacking interaction and the conserved Lys-Glu salt bridge. The findings suggest a model for the R-state involving small movements in the N-lobe that promote compactness within the kinase active site and alter mobility surrounding the activation loop. Such properties of conformation selection might be exploited to modulate the protein docking interface used by ERK substrates and effectors.


Asunto(s)
Adenosina Trifosfato , Dominio Catalítico , Fosforilación , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA