Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(14)2021 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-34299291

RESUMEN

Schizophrenia is a chronic, heterogeneous neurodevelopmental disorder that has complex symptoms and uncertain etiology. Mounting evidence indicates the involvement of genetics and epigenetic disturbances, alteration in gut microbiome, immune system abnormalities, and environmental influence in the disease, but a single root cause and mechanism involved has yet to be conclusively determined. Consequently, the identification of diagnostic markers and the development of psychotic drugs for the treatment of schizophrenia faces a high failure rate. This article surveys the etiology of schizophrenia with a particular focus on gut microbiota regulation and the microbial signaling system that correlates with the brain through the vagus nerve, enteric nervous system, immune system, and production of postbiotics. Gut microbially produced molecules may lay the groundwork for further investigations into the role of gut microbiota dysbiosis and the pathophysiology of schizophrenia. Current treatment of schizophrenia is limited to psychotherapy and antipsychotic drugs that have significant side effects. Therefore, alternative therapeutic options merit exploration. The use of psychobiotics alone or in combination with antipsychotics may promote the development of novel therapeutic strategies. In view of the individual gut microbiome structure and personalized response to antipsychotic drugs, a tailored and targeted manipulation of gut microbial diversity naturally by novel prebiotics (non-digestible fiber) may be a successful alternative therapeutic for the treatment of schizophrenia patients.


Asunto(s)
Antipsicóticos/uso terapéutico , Microbioma Gastrointestinal/efectos de los fármacos , Probióticos/uso terapéutico , Esquizofrenia/microbiología , Esquizofrenia/terapia , Encéfalo/microbiología , Disbiosis/inmunología , Disbiosis/metabolismo , Disbiosis/microbiología , Microbioma Gastrointestinal/fisiología , Humanos , Sistema Inmunológico , Prebióticos/microbiología
2.
RSC Adv ; 14(22): 15821-15831, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38752161

RESUMEN

The widespread and excessive use of antimicrobial drugs has resulted in a concerning rise in bacterial resistance, leading to a risk of untreatable infections. The aim of this study was to formulate a robust and efficient antibacterial treatment to address this challenge. Previous work focused on the effectiveness of the Cu-BTC metal-organic framework (MOF; BTC stands for 1,3,5-benzenetricarboxylate) in combatting various bacterial strains. Herein, we compare the antibacterial properties of Cu-BTC with our newly designed Cu-GA MOF, consisting of copper ions bridged by deprotonated gallate ligands (H2gal2-), against Escherichia coli (E. coli) and Lactobacillus bacteria. Cu-GA was synthesized hydrothermally from copper salt and naturally derived gallic acid (H4gal) and characterized for antibacterial evaluation. The gradual breakdown of Cu(H2gal) resulted in a significant antibacterial effect that is due to the release of copper ions and gallate ligands from the framework. Both copper MOFs were nontoxic to bacteria at low concentrations and growth was completely inhibited at high concentrations when treated with Cu-BTC (1500 µg for E. coli and 1700 µg for Lactobacillus) and Cu-GA (2000 µg for both bacterial strains). Furthermore, our agarose gel electrophoresis results indicate that both MOFs could disrupt bacterial cell membranes, hindering the synthesis of DNA. These findings confirm the antibacterial properties of Cu-BTC and the successful internalization of Cu2+ ions and gallic acid by bacteria from the Cu-GA MOF framework, suggesting the potential for a sustained and effective therapeutic approach against pathogenic microorganisms.

3.
World J Gastroenterol ; 29(11): 1708-1720, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-37077515

RESUMEN

Coronavirus disease 2019 (COVID-19) infection caused by the severe acute respiratory syndrome coronavirus 2 virus, its symptoms, treatment, and post-COVID-19 effects have been a major focus of research since 2020. In addition to respiratory symptoms, different clinical variants of the virus have been associated with dynamic symptoms and multiorgan diseases, including liver abnormalities. The release of cytokines by the activation of innate immune cells during viral infection and the high doses of drugs used for COVID-19 treatment are considered major drivers of liver injury in COVID-19 patients. The degree of hepatic inflammation in patients suffering from chronic liver disease and having COVID-19 could be severe and can be estimated through different liver chemistry abnormality markers. Gut microbiota influences liver chemistry through its metabolites. Gut dysbiosis during COVID-19 treatment can promote liver inflammation. Here, we highlighted the bidirectional association of liver physiology and gut microbiota (gut-liver axis) and its potential to manipulate drug-induced chemical abnormalities in the livers of COVID-19 patients.


Asunto(s)
COVID-19 , Microbioma Gastrointestinal , Hepatopatías , Probióticos , Humanos , Microbioma Gastrointestinal/fisiología , Probióticos/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Hepatopatías/metabolismo , Inflamación , Disbiosis/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA