Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomedicines ; 11(2)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36830961

RESUMEN

In designing porous scaffolds, permeability is essential to consider as a function of cell migration and bone tissue regeneration. Good permeability has been achieved by mimicking the complexity of natural cancellous bone. In this study, a porous scaffold was developed according to the morphological indices of cancellous bone (porosity, specific surface area, thickness, and tortuosity). The computational fluid dynamics method analyzes the fluid flow through the scaffold. The permeability values of natural cancellous bone and three types of scaffolds (cubic, octahedron pillar, and Schoen's gyroid) were compared. The results showed that the permeability of the Negative Schwarz Primitive (NSP) scaffold model was similar to that of natural cancellous bone, which was in the range of 2.0 × 10-11 m2 to 4.0 × 10-10 m2. In addition, it was observed that the tortuosity parameter significantly affected the scaffold's permeability and shear stress values. The tortuosity value of the NSP scaffold was in the range of 1.5-2.8. Therefore, tortuosity can be manipulated by changing the curvature of the surface scaffold radius to obtain a superior bone tissue engineering construction supporting cell migration and tissue regeneration. This parameter should be considered when making new scaffolds, such as our NSP. Such efforts will produce a scaffold architecturally and functionally close to the natural cancellous bone, as demonstrated in this study.

2.
Materials (Basel) ; 14(24)2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34947150

RESUMEN

The selection of biomaterials for bearing in total hip arthroplasty is very important to avoid various risks of primary postoperative failure for patients. The current investigation attempts to analyze the Tresca stress of metal-on-metal bearings with three different materials, namely, cobalt chromium molybdenum (CoCrMo), stainless steel 316L (SS 316L), and titanium alloy (Ti6Al4V). We used computational simulations using a 2D axisymmetric finite element model to predict Tresca stresses under physiological conditions of the human hip joint during normal walking. The simulation results show that Ti6Al4V-on-Ti6Al4V has the best performance to reduce Tresca stress by 45.76% and 39.15%, respectively, compared to CoCrMo-on-CoCrMo and SS 316L-on-SS 316L.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA