RESUMEN
Recent advances in sequencing technologies and collaborative efforts have led to substantial progress in identifying the genetic causes of amyotrophic lateral sclerosis (ALS). This momentum has, in turn, fostered the development of putative molecular therapies. In this Review, we outline the current genetic knowledge, emphasizing recent discoveries and emerging concepts such as the implication of distinct types of mutation, variability in mutated genes in diverse genetic ancestries and gene-environment interactions. We also propose a high-level model to synthesize the interdependent effects of genetics, environmental and lifestyle factors, and ageing into a unified theory of ALS. Furthermore, we summarize the current status of therapies developed on the basis of genetic knowledge established for ALS over the past 30 years, and we discuss how developing treatments for ALS will advance our understanding of targeting other neurological diseases.
Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/terapia , Mutación , Interacción Gen-AmbienteRESUMEN
OBJECTIVE: Restless legs syndrome (RLS) is a neurological condition that causes uncomfortable sensations in the legs and an irresistible urge to move them, typically during periods of rest. The genetic basis and pathophysiology of RLS are incompletely understood. We sought to identify additional novel genetic risk factors associated with RLS susceptibility. METHODS: We performed a whole-genome sequencing and genome-wide association meta-analysis of RLS cases (n = 9,851) and controls (n = 38,957) in 3 population-based biobanks (All of Us, Canadian Longitudinal Study on Aging, and CARTaGENE). RESULTS: Genome-wide association analysis identified 9 independent risk loci, of which 8 had been previously reported, and 1 was a novel risk locus (LMX1B, rs35196838, OR 1.14, 95% CI 1.09-1.19, p value = 2.2 × 10-9). Furthermore, a transcriptome-wide association study also identified GLO1 and a previously unreported gene, ELFN1. A genetic correlation analysis revealed significant common variant overlaps between RLS and neuroticism (rg = 0.40, se = 0.08, p value = 5.4 × 10-7), depression (rg = 0.35, se = 0.06, p value = 2.17 × 10-8), and intelligence (rg = -0.20, se = 0.06, p value = 4.0 × 10-4). INTERPRETATION: Our study expands the understanding of the genetic architecture of RLS, and highlights the contributions of common variants to this prevalent neurological disorder. ANN NEUROL 2024;96:994-1005.
Asunto(s)
Estudio de Asociación del Genoma Completo , Síndrome de las Piernas Inquietas , Síndrome de las Piernas Inquietas/genética , Síndrome de las Piernas Inquietas/epidemiología , Humanos , Factores de Riesgo , Masculino , Femenino , Predisposición Genética a la Enfermedad/genética , Persona de Mediana Edad , Anciano , Secuenciación Completa del Genoma , Polimorfismo de Nucleótido Simple/genética , GenómicaRESUMEN
PURPOSE: The genetic etiology of amyotrophic lateral sclerosis (ALS) includes few rare, large-effect variants and potentially many common, small-effect variants per case. The genetic risk liability for ALS might require a threshold comprised of a certain amount of variants. Here, we tested the degree to which risk for ALS was affected by rare variants in ALS genes, polygenic risk score, or both. METHODS: 335 ALS cases and 356 controls from Québec, Canada were concurrently tested by microarray genotyping and targeted sequencing of ALS genes known at the time of study inception. ALS genome-wide association studies summary statistics were used to estimate an ALS polygenic risk score (PRS). Cases and controls were subdivided into rare-variant heterozygotes and non-heterozygotes. RESULTS: Risk for ALS was significantly associated with PRS and rare variants independently in a logistic regression model. Although ALS PRS predicted a small amount of ALS risk overall, the effect was most pronounced between ALS cases and controls that were not heterozygous for a rare variant in the ALS genes surveyed. CONCLUSION: Both PRS and rare variants in ALS genes impact risk for ALS. PRS for ALS is most informative when rare variants are not observed in ALS genes.
Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Estudios de Asociación Genética , Esclerosis Amiotrófica Lateral/epidemiología , Esclerosis Amiotrófica Lateral/genética , Estudio de Asociación del Genoma Completo , Canadá , Genoma , Predisposición Genética a la EnfermedadRESUMEN
Determining the genetic contributions to Parkinson's disease (PD) across diverse ancestries is a high priority as this work can guide therapeutic development in a global setting. The genetics of PD spans the etiological risk spectrum, from rare, highly deleterious variants linked to monogenic forms with Mendelian patterns of inheritance, to common variation involved in sporadic disease. A major limitation in PD genomics research is lack of racial and ethnic diversity. Enrollment disparities have detrimental consequences on the generalizability of results and exacerbate existing inequities in care. The Black and African American Connections to Parkinson's Disease (BLAAC PD) study is part of the Global Parkinson's Genetics Program, supported by the Aligning Science Across Parkinson's initiative. The goal of the study is to investigate the genetic architecture underlying PD risk and progression in the Black and/or African American populations. This cross-sectional multicenter study in the United States has a recruitment target of up to 2,000 individuals with PD and up to 2,000 controls, all of Black and/or African American ancestry. The study design incorporates several strategies to reduce barriers to research participation. The multifaceted recruitment strategy aims to involve individuals with and without PD in various settings, emphasizing community outreach and engagement. The BLAAC PD study is an important first step toward informing understanding of the genetics of PD in a more diverse population.
Asunto(s)
Negro o Afroamericano , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/etnología , Enfermedad de Parkinson/epidemiología , Negro o Afroamericano/genética , Negro o Afroamericano/estadística & datos numéricos , Estudios Transversales , Masculino , Femenino , Estados Unidos/epidemiología , Predisposición Genética a la Enfermedad/genética , Persona de Mediana Edad , AncianoRESUMEN
Cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS) is an autosomal recessive neurodegenerative disease, usually caused by biallelic AAGGG repeat expansions in RFC1. In this study, we leveraged whole genome sequencing data from nearly 10 000 individuals recruited within the Genomics England sequencing project to investigate the normal and pathogenic variation of the RFC1 repeat. We identified three novel repeat motifs, AGGGC (n = 6 from five families), AAGGC (n = 2 from one family) and AGAGG (n = 1), associated with CANVAS in the homozygous or compound heterozygous state with the common pathogenic AAGGG expansion. While AAAAG, AAAGGG and AAGAG expansions appear to be benign, we revealed a pathogenic role for large AAAGG repeat configuration expansions (n = 5). Long-read sequencing was used to characterize the entire repeat sequence, and six patients exhibited a pure AGGGC expansion, while the other patients presented complex motifs with AAGGG or AAAGG interruptions. All pathogenic motifs appeared to have arisen from a common haplotype and were predicted to form highly stable G quadruplexes, which have previously been demonstrated to affect gene transcription in other conditions. The assessment of these novel configurations is warranted in CANVAS patients with negative or inconclusive genetic testing. Particular attention should be paid to carriers of compound AAGGG/AAAGG expansions when the AAAGG motif is very large (>500 repeats) or the AAGGG motif is interrupted. Accurate sizing and full sequencing of the satellite repeat with long-read sequencing is recommended in clinically selected cases to enable accurate molecular diagnosis and counsel patients and their families.
Asunto(s)
Ataxia Cerebelosa , Enfermedades del Sistema Nervioso Periférico , Síndrome , Enfermedades Vestibulares , Humanos , Vestibulopatía Bilateral , Ataxia Cerebelosa/genética , Ataxia Cerebelosa/diagnóstico , Enfermedades Neurodegenerativas , Enfermedades del Sistema Nervioso Periférico/diagnóstico , Enfermedades del Sistema Nervioso Periférico/genética , Enfermedades Vestibulares/diagnóstico , Enfermedades Vestibulares/genéticaRESUMEN
Previous studies using whole exome sequencing (WES) have shown that a significant proportion of adult patients with undiagnosed ataxia in European and North American cohorts have a known genetic cause. Little is known about the diagnostic yield of WES in non-Caucasian ataxic populations. Herein, we used WES to investigate a Brazilian cohort of 76 adult patients with idiopathic ataxia previously screened for trinucleotide expansions in known ataxia genes. We collected clinical and radiological data from each patient. WES was performed following standard procedures. Only variants labeled as pathogenic or likely pathogenic according to American college of medical genetics and genomics (ACMG) criteria were retrieved. We determined the diagnostic yield of WES for the whole cohort and also for subgroups defined according to presence or not of pyramidal signs, peripheral neuropathy, and cerebellar atrophy. There were 41 women and 35 men. Mean age at testing was 48 years. Pyramidal signs, peripheral neuropathy, tremor, and cerebellar atrophy were found in 38.1%, 13.1%, 10.5%, and 68.3% of all subjects, respectively. Diagnostic yield of WES was 35.5%. Thirty-six distinct mutations were found in 20 different genes, determining the diagnosis of 18 autosomal recessive and 9 autosomal dominant ataxias. SACS and SPG7 were the most frequently found underlying genes. WES performed better in the subgroup with vs the subgroup without spasticity (p = 0.005). WES was diagnostic in 35.5% of cases of the Brazilian cohort of ataxia cases. These results have implications for diagnosis, genetic counseling and eventually treatment.
Asunto(s)
Ataxia Cerebelosa , Adulto , Ataxia , Brasil , Ataxia Cerebelosa/diagnóstico , Ataxia Cerebelosa/genética , Femenino , Humanos , Masculino , Mutación/genética , Secuenciación del ExomaRESUMEN
BACKGROUND: Spinocerebellar ataxia types 1, 2, 3 and Huntington disease are neurodegenerative disorders caused by expanded CAG repeats. METHODS: We performed an in-silico analysis of CAG repeats in ATXN1, ATXN2, ATXN3, and HTT using 30× whole-=genome sequencing data of 2504 samples from the 1000 Genomes Project. RESULTS: Seven HTT-positive, 3 ATXN2-positive, 1 ATXN3-positive, and 6 possibly ATXN1-positive samples were identified. No correlation was found between the repeat sizes of the different genes. The distribution of CAG alleles varied by ethnicity. CONCLUSION: Our results suggest that there may be asymptomatic small expanded repeats in almost 0.5% of these populations. © 2020 International Parkinson and Movement Disorder Society.
Asunto(s)
Enfermedad de Huntington , Ataxias Espinocerebelosas , Alelos , Ataxina-1/genética , Ataxina-2/genética , Ataxina-3/genética , Humanos , Proteína Huntingtina/genética , Proteínas Represoras/genética , Ataxias Espinocerebelosas/genética , Expansión de Repetición de Trinucleótido/genética , Repeticiones de Trinucleótidos/genéticaRESUMEN
BACKGROUND: Although the typical inheritance of spastic paraplegia 7 is recessive, several reports have suggested that SPG7 variants may also cause autosomal dominant hereditary spastic paraplegia (HSP). OBJECTIVES: We aimed to conduct an exome-wide genetic analysis on a large Canadian cohort of HSP patients and controls to examine the association of SPG7 and HSP. METHODS: We analyzed 585 HSP patients from 372 families and 1175 controls, including 580 unrelated individuals. Whole-exome sequencing was performed on 400 HSP patients (291 index cases) and all 1175 controls. RESULTS: The frequency of heterozygous pathogenic/likely pathogenic SPG7 variants (4.8%) among unrelated HSP patients was higher than among unrelated controls (1.7%; OR 2.88, 95% CI 1.24-6.66, P = 0.009). The heterozygous SPG7 p.(Ala510Val) variant was found in 3.7% of index patients versus 0.85% in unrelated controls (OR 4.42, 95% CI 1.49-13.07, P = 0.005). Similar results were obtained after including only genetically-undiagnosed patients. We identified four heterozygous SPG7 variant carriers with an additional pathogenic variant in known HSP genes, compared to zero in controls (OR 19.58, 95% CI 1.05-365.13, P = 0.0031), indicating potential digenic inheritance. We further identified four families with heterozygous variants in SPG7 and SPG7-interacting genes (CACNA1A, AFG3L2, and MORC2). Of these, there is especially compelling evidence for epistasis between SPG7 and AFG3L2. The p.(Ile705Thr) variant in AFG3L2 is located at the interface between hexamer subunits, in a hotspot of mutations associated with spinocerebellar ataxia type 28 that affect its proteolytic function. CONCLUSIONS: Our results provide evidence for complex inheritance in SPG7-associated HSP, which may include recessive and possibly dominant and digenic/epistasis forms of inheritance. © 2021 International Parkinson and Movement Disorder Society.
Asunto(s)
Paraplejía Espástica Hereditaria , Proteasas ATP-Dependientes , ATPasas Asociadas con Actividades Celulares Diversas/genética , Canadá , Humanos , Metaloendopeptidasas/genética , Mutación/genética , Paraplejía , Paraplejía Espástica Hereditaria/genética , Factores de TranscripciónRESUMEN
BACKGROUND: The genetic and epidemiological features of hereditary ataxias have been reported in several populations; however, Turkey is still unexplored. Due to high consanguinity, recessive ataxias are more common in Turkey than in Western European populations. OBJECTIVE: To identify the prevalence and genetic structure of hereditary ataxias in the Turkish population. METHODS: Our cohort consisted of 1296 index cases and 324 affected family members. Polymerase chain reaction followed by Sanger sequencing or fragment analysis were performed to screen for the trinucleotide repeat expansions in families with a dominant inheritance pattern, as well as in sporadic cases. The expansion in the frataxin (FXN) gene was tested in all autosomal recessive cases and in sporadic cases with a compatible phenotype. Whole-exome sequencing was applied to 251 probands, selected based on the family history, age of onset, and phenotype. RESULTS: Mutations in known ataxia genes were identified in 30% of 1296 probands. Friedreich's ataxia was found to be the most common recessive ataxia in Turkey, followed by autosomal recessive spastic ataxia of Charlevoix-Saguenay. Spinocerebellar ataxia types 2 and 1 were the most common dominant ataxias. Whole-exome sequencing was performed in 251 probands with an approximate diagnostic yield of 50%. Forty-eight novel variants were found in a plethora of genes, suggesting a high heterogeneity. Variants of unknown significance were discussed in light of clinical data. CONCLUSION: With the large sample size recruited across the country, we consider that our results provide an accurate picture of the frequency of hereditary ataxias in Turkey. © 2021 International Parkinson and Movement Disorder Society.
Asunto(s)
Atrofia Óptica , Ataxias Espinocerebelosas , Degeneraciones Espinocerebelosas , Humanos , Espasticidad Muscular , Turquía/epidemiologíaRESUMEN
The last decade has proven that amyotrophic lateral sclerosis (ALS) is clinically and genetically heterogeneous, and that the genetic component in sporadic cases might be stronger than expected. This study investigates 1,200 patients to revisit ALS in the ethnically heterogeneous yet inbred Turkish population. Familial ALS (fALS) accounts for 20% of our cases. The rates of consanguinity are 30% in fALS and 23% in sporadic ALS (sALS). Major ALS genes explained the disease cause in only 35% of fALS, as compared with ~70% in Europe and North America. Whole exome sequencing resulted in a discovery rate of 42% (53/127). Whole genome analyses in 623 sALS cases and 142 population controls, sequenced within Project MinE, revealed well-established fALS gene variants, solidifying the concept of incomplete penetrance in ALS. Genome-wide association studies (GWAS) with whole genome sequencing data did not indicate a new risk locus. Coupling GWAS with a coexpression network of disease-associated candidates, points to a significant enrichment for cell cycle- and division-related genes. Within this network, literature text-mining highlights DECR1, ATL1, HDAC2, GEMIN4, and HNRNPA3 as important genes. Finally, information on ALS-related gene variants in the Turkish cohort sequenced within Project MinE was compiled in the GeNDAL variant browser (www.gendal.org).
Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Bases de Datos Genéticas , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Internet , Fenotipo , Turquía , Secuenciación Completa del GenomaRESUMEN
INTRODUCTION: The genetic factors and molecular mechanisms predisposing to essential tremor (ET) remains largely unknown. OBJECTIVE: The objective of this study was to identify pathways and genes relevant to ET by integrating multiomics approaches. METHODS: Case-control RNA sequencing of 2 cerebellar regions was done for 64 samples. A phenome-wide association study (pheWAS) of the differentially expressed genes was conducted, and a genome-wide gene association study (GWGAS) was done to identify pathways overlapping with the transcriptomic data. Finally, a transcriptome-wide association study (TWAS) was done to identify novel risk genes for ET. RESULTS: We identified several novel dysregulated genes, including CACNA1A and SHF. Pathways including axon guidance, olfactory loss, and calcium channel activity were significantly enriched. The ET GWGAS data found calcium ion-regulated exocytosis of neurotransmitters to be significantly enriched. The TWAS also found calcium and olfactory pathways enriched. The pheWAS identified that the underexpressed differentially expressed gene, SHF, is associated with a blood pressure medication (P = 9.3E-08), which is used to reduce tremor in ET patients. Treatment of cerebellar DAOY cells with the ET drug propranolol identified increases in SHF when treated, suggesting it may rescue the underexpression. CONCLUSION: We found that calcium-related pathways were enriched across the GWGAS, TWAS, and transcriptome. SHF was shown to have significantly decreased expression, and the pheWAS showed it was associated with blood pressure medication. The treatment of cells with propranolol showed that the drug restored levels of SHF. Overall, our findings highlight the power of integrating multiple different approaches to prioritize ET pathways and genes. © 2020 International Parkinson and Movement Disorder Society.
Asunto(s)
Temblor Esencial , Estudios de Casos y Controles , Temblor Esencial/tratamiento farmacológico , Temblor Esencial/genética , Estudio de Asociación del Genoma Completo , Humanos , TranscriptomaRESUMEN
Distal hereditary motor neuronopathies (dHMN) are a genetically heterogeneous group of neuromuscular disorders caused by anterior horn cell degeneration and progressive distal muscle weakness. A heterozygous missense variant in FBXO38 has been previously described in two families affected by autosomal-dominant dHMN. In this paper, we describe a homozygous missense variant in FBXO38 (c.1577G>A; p.(Arg526Gln)) in a young Turkish female, offspring of consanguineous parents, with a congenital mild neuronopathy with idiopathic toe walking, normal sensory examination, and hearing loss. This work is the first to describe a novel homozygous variant and a suggested loss of function mechanism in FBXO38, expanding the dHMN type IID phenotype.
Asunto(s)
Proteínas F-Box/genética , Atrofia Muscular Espinal/genética , Adulto , Femenino , Heterogeneidad Genética , Heterocigoto , Homocigoto , Humanos , Atrofia Muscular Espinal/fisiopatología , Mutación Missense/genética , Linaje , Fenotipo , Adulto JovenRESUMEN
BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a devastating disease whose complex pathology has been associated with a strong genetic component in the context of both familial and sporadic disease. Herein, we adopted a next-generation sequencing approach to Greek patients suffering from sporadic ALS (together with their healthy counterparts) in order to explore further the genetic basis of sporadic ALS (sALS). RESULTS: Whole-genome sequencing analysis of Greek sALS patients revealed a positive association between FTO and TBC1D1 gene variants and sALS. Further, linkage disequilibrium analyses were suggestive of a specific disease-associated haplotype for FTO gene variants. Genotyping for these variants was performed in Greek, Sardinian, and Turkish sALS patients. A lack of association between FTO and TBC1D1 variants and sALS in patients of Sardinian and Turkish descent may suggest a founder effect in the Greek population. FTO was found to be highly expressed in motor neurons, while in silico analyses predicted an impact on FTO and TBC1D1 mRNA splicing for the genomic variants in question. CONCLUSIONS: To our knowledge, this is the first study to present a possible association between FTO gene variants and the genetic etiology of sALS. In addition, the next-generation sequencing-based genomics approach coupled with the two-step validation strategy described herein has the potential to be applied to other types of human complex genetic disorders in order to identify variants of clinical significance.
Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Esclerosis Amiotrófica Lateral/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Estudios de Casos y Controles , Simulación por Computador , Efecto Fundador , Proteínas Activadoras de GTPasa/genética , Grecia , Haplotipos , Humanos , Desequilibrio de Ligamiento , Neuronas Motoras/patología , Neuronas Motoras/fisiología , Polimorfismo de Nucleótido SimpleRESUMEN
Alpha-synuclein (αSyn) is an intrinsically disordered protein that accumulates in the brains of patients with Parkinson's disease and forms intraneuronal inclusions called Lewy Bodies. While the mechanism underlying the dysregulation of αSyn in Parkinson's disease is unclear, it is thought that prionoid cell-to-cell propagation of αSyn has an important role. Through a high throughput screen, we recently identified 38 genes whose knock down modulates αSyn propagation. Follow up experiments were undertaken for two of those genes, TAX1BP1 and ADAMTS19, to study the mechanism with which they regulate αSyn homeostasis. We used a recently developed M17D neuroblastoma cell line expressing triple mutant (E35K+E46K+E61K) "3K" αSyn under doxycycline induction. 3K αSyn spontaneously forms inclusions that show ultrastructural similarities to Lewy Bodies. Experiments using that cell line showed that TAX1BP1 and ADAMTS19 regulate how αSyn interacts with lipids and phase separates into inclusions, respectively, adding to the growing body of evidence implicating those processes in Parkinson's disease. Through RNA sequencing, we identified several genes that are differentially expressed after knock-down of TAX1BP1 or ADAMTS19. Burden analysis revealed that those differentially expressed genes (DEGs) carry an increased frequency of rare risk variants in Parkinson's disease patients versus healthy controls, an effect that was independently replicated across two separate cohorts (GP2 and AMP-PD). Weighted gene co-expression network analysis (WGCNA) showed that the DEGs cluster within modules in regions of the brain that develop high degrees of αSyn pathology (basal ganglia, cortex). We propose a novel model for the genetic architecture of sporadic Parkinson's disease: increased burden of risk variants across genetic networks dysregulates pathways underlying αSyn homeostasis, thereby leading to pathology and neurodegeneration.
RESUMEN
Multiple system atrophy (MSA) is an adult-onset, sporadic synucleinopathy characterized by parkinsonism, cerebellar ataxia, and dysautonomia. The genetic architecture of MSA is poorly understood, and treatments are limited to supportive measures. Here, we performed a comprehensive analysis of whole genome sequence data from 888 European-ancestry MSA cases and 7,128 controls to systematically investigate the genetic underpinnings of this understudied neurodegenerative disease. We identified four significantly associated risk loci using a genome-wide association study approach. Transcriptome-wide association analyses prioritized USP38-DT, KCTD7, and lnc-KCTD7-2 as novel susceptibility genes for MSA within these loci, and single-nucleus RNA sequence analysis found that the associated variants acted as cis-expression quantitative trait loci for multiple genes across neuronal and glial cell types. In conclusion, this study highlights the role of genetic determinants in the pathogenesis of MSA, and the publicly available data from this study represent a valuable resource for investigating synucleinopathies.
Asunto(s)
Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Atrofia de Múltiples Sistemas , Atrofia de Múltiples Sistemas/genética , Humanos , Predisposición Genética a la Enfermedad/genética , Femenino , Masculino , Anciano , Sitios de Carácter Cuantitativo/genética , Persona de Mediana Edad , Polimorfismo de Nucleótido SimpleRESUMEN
Restless legs syndrome (RLS) is a neurological condition that causes uncomfortable sensations in the legs and an irresistible urge to move them, typically during periods of rest. The genetic basis and pathophysiology of RLS are incompletely understood. Here, we present a whole-genome sequencing and genome-wide association meta-analysis of RLS cases (n = 9,851) and controls (n = 38,957) in three population-based biobanks (All of Us, Canadian Longitudinal Study on Aging, and CARTaGENE). Genome-wide association analysis identified nine independent risk loci, of which eight had been previously reported, and one was a novel risk locus (LMX1B, rs35196838, OR = 1.14, 95% CI = 1.09-1.19, p-value = 2.2 × 10-9). A genome-wide, gene-based common variant analysis identified GLO1 as an additional risk gene (p-value = 8.45 × 10-7). Furthermore, a transcriptome-wide association study also identified GLO1 and a previously unreported gene, ELFN1. A genetic correlation analysis revealed significant common variant overlaps between RLS and neuroticism (rg = 0.40, se = 0.08, p-value = 5.4 × 10-7), depression (rg = 0.35, se = 0.06, p-value = 2.17 × 10-8), and intelligence (rg = -0.20, se = 0.06, p-value = 4.0 × 10-4). Our study expands the understanding of the genetic architecture of RLS and highlights the contributions of common variants to this prevalent neurological disorder.
RESUMEN
Objectives: Recently, the number of dinucleotide CA repeats in an intron of the STMN2 gene was reported to be associated with an increased risk for amyotrophic lateral sclerosis (ALS). Therefore, we sought to replicate this observation in an independent group of ALS patients and a much larger control group. Methods: Here, we used whole-genome sequencing and tested the STMN2 CA repeat in a case-control cohort of the European genetic background and in genomes from various populations in the gnomAD cohort to attempt to replicate this proposed association. Results: We find that repeats well above the previously reported pathogenic threshold of 19 are commonly observed in unaffected individuals across different populations. Furthermore, we did not observe an association between longer STMN2 CA repeats and ALS phenotype. Discussion: In summary, our results do not support a role of STMN2 CA repeats toward ALS risk. As TDP-43 aggregation is central to ALS pathogenesis, lowered expression of STMN2 could be used as a biomarker for ALS. Therefore, a variant associated both with the risk for ALS and the level of STMN2 expression would be clinically useful. However, for a variant to be actionable, it must be strongly replicated in independent cohorts and exceed the rigorous statistical thresholds applied.