Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Physiol ; 172(2): 1089-1104, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27506240

RESUMEN

The DEFECTIVE KERNEL1 (DEK1) calpain is a conserved 240-kD key regulator of three-dimensional body patterning in land plants acting via mitotic cell plane positioning. The activity of the cytosolic C-terminal calpain protease is regulated by the membrane-anchored DEK1 MEM, which is connected to the calpain via the 600-amino acid residue Linker. Similar to the calpain and MEM domains, the Linker is highly conserved in the land plant lineage, the similarity dropping sharply compared with orthologous charophyte sequences. Using site-directed mutagenesis, we studied the effect on Physcomitrella patens development by deleting the Linker and two conserved Linker motifs. The results show that removal of the Linker has nearly the same effect as removal of the entire DEK1 gene. In contrast, deletion of the conserved Laminin_G3 (LG3) domain had a milder effect, perturbing leafy gametophore patterning and archegonia development. The LG3 domain from Marchantia polymorpha is fully functional in P. patens, whereas angiosperm sequences are not functional. Deletion of a C-terminal Linker subsegment containing a potential calpain autolytic site severely disturbs gametophore development. Finally, changing one of the three calpain active-site amino acid residues results in the same phenotype as deleting the entire DEK1 gene. Based on the conserved nature of animal and DEK1 calpains, we propose that the DEK1 MEM-Linker complex inactivates the calpain by forcing apart the two calpain subunits carrying the three amino acids of the active site.


Asunto(s)
Bryopsida/genética , Calpaína/genética , Mutación , Proteínas de Plantas/genética , Secuencias de Aminoácidos/genética , Secuencia de Aminoácidos , Sitios de Unión/genética , Bryopsida/crecimiento & desarrollo , Bryopsida/metabolismo , Calpaína/química , Calpaína/metabolismo , Dominio Catalítico , Membrana Celular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Fenotipo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Estructura Terciaria de Proteína , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
3.
Plant Physiol ; 166(2): 903-19, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25185121

RESUMEN

DEFECTIVE KERNEL1 (DEK1) of higher plants plays an essential role in position-dependent signaling and consists of a large transmembrane domain (MEM) linked to a protease catalytic domain and a regulatory domain. Here, we show that the postulated sensory Loop of the MEM domain plays an important role in the developmental regulation of DEK1 activity in the moss Physcomitrella patens. Compared with P. patens lacking DEK1 (∆dek1), the dek1∆loop mutant correctly positions the division plane in the bud apical cell. In contrast with an early developmental arrest of ∆dek1 buds, dek1∆loop develops aberrant gametophores lacking expanded phyllids resulting from misregulation of mitotic activity. In contrast with the highly conserved sequence of the protease catalytic domain, the Loop is highly variable in land plants. Functionally, the sequence from Marchantia polymorpha fully complements the dek1∆loop phenotype, whereas sequences from maize (Zea mays) and Arabidopsis (Arabidopsis thaliana) give phenotypes with retarded growth and affected phyllid development. Bioinformatic analysis identifies MEM as a member of the Major Facilitator Superfamily, membrane transporters reacting to stimuli from the external environment. Transcriptome analysis comparing wild-type and ∆dek1 tissues identifies an effect on two groups of transcripts connected to dek1 mutant phenotypes: transcripts related to cell wall remodeling and regulation of the AINTEGUMENTA, PLETHORA, and BABY BOOM2 (APB2) and APB3 transcription factors known to regulate bud initiation. Finally, sequence data support the hypothesis that the advanced charophyte algae that evolved into ancestral land plants lost cytosolic calpains, retaining DEK1 as the sole calpain in the evolving land plant lineage.


Asunto(s)
Tipificación del Cuerpo , Bryopsida/genética , Genes de Plantas , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Proteínas de Plantas/química , Proteínas de Plantas/fisiología , Homología de Secuencia de Aminoácido
4.
Commun Biol ; 7(1): 261, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438476

RESUMEN

Calpains are cysteine proteases that control cell fate transitions whose loss of function causes severe, pleiotropic phenotypes in eukaryotes. Although mainly considered as modulatory proteases, human calpain targets are directed to the N-end rule degradation pathway. Several such targets are transcription factors, hinting at a gene-regulatory role. Here, we analyze the gene-regulatory networks of the moss Physcomitrium patens and characterize the regulons that are misregulated in mutants of the calpain DEFECTIVE KERNEL1 (DEK1). Predicted cleavage patterns of the regulatory hierarchies in five DEK1-controlled subnetworks are consistent with a pleiotropic and regulatory role during cell fate transitions targeting multiple functions. Network structure suggests DEK1-gated sequential transitions between cell fates in 2D-to-3D development. Our method combines comprehensive phenotyping, transcriptomics and data science to dissect phenotypic traits, and our model explains the protease function as a switch gatekeeping cell fate transitions potentially also beyond plant development.


Asunto(s)
Bryopsida , Péptido Hidrolasas , Humanos , Calpaína/genética , Endopeptidasas , Diferenciación Celular/genética
5.
Sci Rep ; 7(1): 5111, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28698618

RESUMEN

Gene targeting is a powerful reverse genetics technique for site-specific genome modification. Intrinsic homologous recombination in the moss Physcomitrella patens permits highly effective gene targeting, a characteristic that makes this organism a valuable model for functional genetics. Functional characterization of domains located within a multi-domain protein depends on the ability to generate mutants harboring genetic modifications at internal gene positions while maintaining the reading-frames of the flanking exons. In this study, we designed and evaluated different gene targeting constructs for targeted gene manipulation of sequences corresponding to internal domains of the DEFECTIVE KERNEL1 protein in Physcomitrella patens. Our results show that gene targeting-associated mutagenesis of introns can have adverse effects on splicing, corrupting the normal reading frame of the transcript. We show that successful genetic modification of internal sequences of multi-exon genes depends on gene-targeting strategies which insert the selection marker cassette into the 5' end of the intron and preserve the nucleotide sequence of the targeted intron.


Asunto(s)
Bryopsida/genética , Calpaína/genética , Mutagénesis , Bryopsida/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Marcación de Gen , Intrones , Proteínas de Plantas/genética , Empalme del ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA