Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Diagnostics (Basel) ; 14(12)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38928680

RESUMEN

Rapid advancements in artificial intelligence (AI) and machine learning (ML) are currently transforming the field of diagnostics, enabling unprecedented accuracy and efficiency in disease detection, classification, and treatment planning. This Special Issue, entitled "Artificial Intelligence Advances for Medical Computer-Aided Diagnosis", presents a curated collection of cutting-edge research that explores the integration of AI and ML technologies into various diagnostic modalities. The contributions presented here highlight innovative algorithms, models, and applications that pave the way for improved diagnostic capabilities across a range of medical fields, including radiology, pathology, genomics, and personalized medicine. By showcasing both theoretical advancements and practical implementations, this Special Issue aims to provide a comprehensive overview of current trends and future directions in AI-driven diagnostics, fostering further research and collaboration in this dynamic and impactful area of healthcare. We have published a total of 12 research articles in this Special Issue, all collected between March 2023 and December 2023, comprising 1 Editorial cover letter, 9 regular research articles, 1 review article, and 1 article categorized as "other".

2.
Diagnostics (Basel) ; 14(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38928696

RESUMEN

Alzheimer's disease (AD) is a neurological disorder that significantly impairs cognitive function, leading to memory loss and eventually death. AD progresses through three stages: early stage, mild cognitive impairment (MCI) (middle stage), and dementia. Early diagnosis of Alzheimer's disease is crucial and can improve survival rates among patients. Traditional methods for diagnosing AD through regular checkups and manual examinations are challenging. Advances in computer-aided diagnosis systems (CADs) have led to the development of various artificial intelligence and deep learning-based methods for rapid AD detection. This survey aims to explore the different modalities, feature extraction methods, datasets, machine learning techniques, and validation methods used in AD detection. We reviewed 116 relevant papers from repositories including Elsevier (45), IEEE (25), Springer (19), Wiley (6), PLOS One (5), MDPI (3), World Scientific (3), Frontiers (3), PeerJ (2), Hindawi (2), IO Press (1), and other multiple sources (2). The review is presented in tables for ease of reference, allowing readers to quickly grasp the key findings of each study. Additionally, this review addresses the challenges in the current literature and emphasizes the importance of interpretability and explainability in understanding deep learning model predictions. The primary goal is to assess existing techniques for AD identification and highlight obstacles to guide future research.

3.
Heliyon ; 10(15): e35037, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39157361

RESUMEN

The current COVID-19 pandemic has affected almost every aspect of life but its impact on the healthcare landscape is conspicuously adverse. However, digital technologies played a significant contribution in coping with the challenges spawned by this pandemic. In this list of applied digital technologies, the role of immersive technologies in battling COVID-19 is notice-worthy. Immersive technologies consisting of virtual reality (VR), augmented reality (AR), mixed reality (MR), extended reality (XR), metaverse, gamification, etc. have shown enormous market growth within the healthcare system, particularly with the emergence of pandemics. These technologies supplemented interactivity, immersive experience, 3D modeling, touching sensory elements, simulation, and feedback mechanisms to tackle the COVID-19 disease in healthcare systems. Keeping in view the applicability and significance of immersive technological advancement, the major aim of this study is to identify and highlight the role of immersive technologies concerning handling COVID-19 in the healthcare setup. The contribution of immersive technologies in the healthcare domain for the different purposes such as medical education, medical training, proctoring, online surgeries, stress management, social distancing, physical fitness, drug manufacturing and designing, and cognitive rehabilitation is highlighted. A comprehensive and in-depth analysis of the collected studies has been performed to understand the current research work and future research directions. A state-of-the-artwork is presented to identify and discuss the various issues involving the adoption of immersive technologies in the healthcare area. Furthermore, the solutions to these emerging challenges and issues have been provided based on an extensive literature study. The results of this study show that immersive technologies have the considerable potential to provide massive support to stakeholders in the healthcare system during current COVID-19 situation and future pandemics.

4.
Diagnostics (Basel) ; 14(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38893643

RESUMEN

The evaluation of mammographic breast density, a critical indicator of breast cancer risk, is traditionally performed by radiologists via visual inspection of mammography images, utilizing the Breast Imaging-Reporting and Data System (BI-RADS) breast density categories. However, this method is subject to substantial interobserver variability, leading to inconsistencies and potential inaccuracies in density assessment and subsequent risk estimations. To address this, we present a deep learning-based automatic detection algorithm (DLAD) designed for the automated evaluation of breast density. Our multicentric, multi-reader study leverages a diverse dataset of 122 full-field digital mammography studies (488 images in CC and MLO projections) sourced from three institutions. We invited two experienced radiologists to conduct a retrospective analysis, establishing a ground truth for 72 mammography studies (BI-RADS class A: 18, BI-RADS class B: 43, BI-RADS class C: 7, BI-RADS class D: 4). The efficacy of the DLAD was then compared to the performance of five independent radiologists with varying levels of experience. The DLAD showed robust performance, achieving an accuracy of 0.819 (95% CI: 0.736-0.903), along with an F1 score of 0.798 (0.594-0.905), precision of 0.806 (0.596-0.896), recall of 0.830 (0.650-0.946), and a Cohen's Kappa (κ) of 0.708 (0.562-0.841). The algorithm achieved robust performance that matches and in four cases exceeds that of individual radiologists. The statistical analysis did not reveal a significant difference in accuracy between DLAD and the radiologists, underscoring the model's competitive diagnostic alignment with professional radiologist assessments. These results demonstrate that the deep learning-based automatic detection algorithm can enhance the accuracy and consistency of breast density assessments, offering a reliable tool for improving breast cancer screening outcomes.

5.
Heliyon ; 10(10): e30756, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38784532

RESUMEN

Sentiment analysis has broad use in diverse real-world contexts, particularly in the online movie industry and other e-commerce platforms. The main objective of our work is to examine the word information order and analyze the content of texts by exploring the hidden meanings of words in online movie text reviews. This study presents an enhanced method of representing text and computationally feasible deep learning models, namely the PEW-MCAB model. The methodology categorizes sentiments by considering the full written text as a unified piece. The feature vector representation is processed using an enhanced text representation called Positional embedding and pretrained Glove Embedding Vector (PEW). The learning of these features is achieved by inculcating a multichannel convolutional neural network (MCNN), which is subsequently integrated into an Attention-based Bidirectional Long Short-Term Memory (AB) model. This experiment examines the positive and negative of online movie textual reviews. Four datasets were used to evaluate the model. When tested on the IMDB, MR (2002), MRC (2004), and MR (2005) datasets, the (PEW-MCAB) algorithm attained accuracy rates of 90.3%, 84.1%, 85.9%, and 87.1%, respectively, in the experimental setting. When implemented in practical settings, the proposed structure shows a great deal of promise for efficacy and competitiveness.

6.
Bioengineering (Basel) ; 11(5)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38790344

RESUMEN

The analysis of body motion is a valuable tool in the assessment and diagnosis of gait impairments, particularly those related to neurological disorders. In this study, we propose a novel automated system leveraging artificial intelligence for efficiently analyzing gait impairment from video-recorded images. The proposed methodology encompasses three key aspects. First, we generate a novel one-dimensional representation of each silhouette image, termed a silhouette sinogram, by computing the distance and angle between the centroid and each detected boundary points. This process enables us to effectively utilize relative variations in motion at different angles to detect gait patterns. Second, a one-dimensional convolutional neural network (1D CNN) model is developed and trained by incorporating the consecutive silhouette sinogram signals of silhouette frames to capture spatiotemporal information via assisted knowledge learning. This process allows the network to capture a broader context and temporal dependencies within the gait cycle, enabling a more accurate diagnosis of gait abnormalities. This study conducts training and an evaluation utilizing the publicly accessible INIT GAIT database. Finally, two evaluation schemes are employed: one leveraging individual silhouette frames and the other operating at the subject level, utilizing a majority voting technique. The outcomes of the proposed method showed superior enhancements in gait impairment recognition, with overall F1-scores of 100%, 90.62%, and 77.32% when evaluated based on sinogram signals, and 100%, 100%, and 83.33% when evaluated based on the subject level, for cases involving two, four, and six gait abnormalities, respectively. In conclusion, by comparing the observed locomotor function to a conventional gait pattern often seen in healthy individuals, the recommended approach allows for a quantitative and non-invasive evaluation of locomotion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA