Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Genome ; 59(1): 51-8, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26692342

RESUMEN

Silver pomfret, Pampus argenteus, is a fish species from coastal waters. Despite its high commercial value, this edible fish has not been sequenced. Hence, its genetic and genomic studies have been limited. We report the first draft genome sequence of the silver pomfret obtained using a Next Generation Sequencing (NGS) technology. We assembled 38.7 Gb of nucleotides into scaffolds of 350 Mb with N50 of about 1.5 kb, using high quality paired end reads. These scaffolds represent 63.7% of the estimated silver pomfret genome length. The newly sequenced and assembled genome has 11.06% repetitive DNA regions, and this percentage is comparable to that of the tilapia genome. The genome analysis predicted 16 322 genes. About 91% of these genes showed homology with known proteins. Many gene clusters were annotated to protein and fatty-acid metabolism pathways that may be important in the context of the meat texture and immune system developmental processes. The reference genome can pave the way for the identification of many other genomic features that could improve breeding and population-management strategies, and it can also help characterize the genetic diversity of P. argenteus.


Asunto(s)
Mapeo Cromosómico , Genoma , Perciformes/genética , Animales , Secuencia de Bases , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN , Tilapia/genética
2.
PLoS One ; 13(8): e0202127, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30092049

RESUMEN

The role of rhizosphere microbial communities in the degradation of hydrocarbons remains poorly understood and is a field of active study. We used high throughput sequencing to explore the rhizosphere microbial diversity in the alfalfa and barley planted oil contaminated soil samples. The analysis of 16s rRNA sequences showed Proteobacteria to be the most enriched (45.9%) followed by Bacteriodetes (21.4%) and Actinobacteria (10.4%) phyla. The results also indicated differences in the microbial diversity among the oil contaminated planted soil samples. The oil contaminated planted soil samples showed a higher richness in the microbial flora when compared to that of untreated samples, as indicated by the Chao1 indices. However, the trend was different for the diversity measure, where oil contaminated barley planted soil samples showed slightly lower diversity indices. While the clustering of soil samples grouped the oil contaminated samples within and across the plant types, the clean sandy soil samples formed a separate group. The oil contaminated rhizosphere soil showed an enrichment of known oil-degrading genera, such as Alcanivorax and Aequorivita, later being specifically enriched in the contaminated soil samples planted with barley. Overall, we found a few well known oil-degrading bacterial groups to be enriched in the oil contaminated planted soil samples compared to the untreated samples. Further, phyla such as Thermi and Gemmatimonadetes showed an enrichment in the oil contaminated soil samples, indicating their potential role in hydrocarbon degradation. The findings of the current study will be useful in understanding the rhizosphere microflora responsible for oil degradation and thus can help in designing appropriate phytoremediation strategies for oil contaminated lands.


Asunto(s)
Hordeum/fisiología , Hidrocarburos/análisis , Medicago sativa/fisiología , Metagenoma , Contaminación por Petróleo , Microbiología del Suelo , Biodegradación Ambiental , Análisis por Conglomerados , Secuenciación de Nucleótidos de Alto Rendimiento , Concentración de Iones de Hidrógeno , Filogenia , ARN Ribosómico 16S/genética , Rizosfera , Suelo/química , Contaminantes del Suelo/análisis
3.
Saudi J Biol Sci ; 22(2): 220-6, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25737656

RESUMEN

Laboratory detection of Brucella is based largely on bacterial isolation and phenotypic characterization. These methods are lengthy and labor-intensive and have been associated with a heightened risk of laboratory-acquired infection. Antibody based indirect detection methods also suffer from limitations in proper diagnosis of the organism. To overcome these problems, nucleic acid amplification has been explored for rapid detection and confirmation of the presence of Brucella spp. PCR-based diagnostics is useful for screening large populations of livestock to identify infected individuals and confirms the presence of the pathogen. Random Amplification of Polymorphic DNA (RAPD) was performed and identified a 1.3 kb PCR fragment specifically amplifiable from DNA isolated from Brucella. A BLAST search revealed no significant homology with the reported sequences from species other than the members of Brucella. The isolated fragment seems to be a part of d-alanine-d-alanine ligase gene in Brucella sp. Translational BLAST revealed certain degree of homology of this sequence with orthologs of this gene reported from other microbial species at the deduced amino acid level. The sequence information was used to develop PCR based assays to detect Brucella sp. from various samples. The minimum detection limit of Brucella from blood and milk samples spiked with Brucella DNA was found to be 1 ng/ml and 10 ng/ml, respectively. In conclusion, we demonstrated that the PCR based detection protocol was successfully used for the detection of Brucella from various organs and spiked samples of diseased sheep. Diagnosis of Brucellosis by PCR based method reported in this study is relatively rapid, specific and simple.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA