Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38935113

RESUMEN

Bio-inspired zinc oxide nanoparticles are gaining immense interest due to their safety, low cost, biocompatibility, and broad biological properties. In recent years, much research has been focused on plant-based nanoparticles, mainly for their eco-friendly, facile, and non-toxic character. Hence, the current study emphasized a bottom-up synthesis of zinc oxide nanoparticles (ZnO NPs) from Psidium guajava aqueous leaf extract and evaluation of its biological properties. The structural characteristic features of biosynthesized ZnO NPs were confirmed using various analytical methods, such as UV-Vis spectroscopy, X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDX), Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HR-TEM). The synthesized ZnO NPs exhibited a hydrodynamic shape with an average particle size of 11.6-80.2 nm. A significant antimicrobial efficiency with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 40 and 27 µg/ml for Enterococcus faecalis, followed by 30 and 40 µg/ml for Staphylococcus aureus, 20 and 30 µg/ml for Staphylococcus mutans, 30 µg/ml for Candida albicans was observed by ZnO NPs. Additionally, they showed significant breakdown of biofilms of Streptococcus mutans and Candida albicans indicating their future value in drug-resistance research. Furthermore, an excellent dose-dependent activity of antioxidant property was noticed with an IC50 of 9.89 µg/ml. The antiproliferative potential of the ZnO NPs was indicated by the viability of MDA MB 231 cells, which showed a drastic decrease in response to increased concentrations of biosynthesized ZnO NPs. Thus, the present results open up vistas to explore their pharmaceutical potential for the development of targeted anticancer drugs in the future.

2.
Environ Geochem Health ; 46(8): 290, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976075

RESUMEN

Heavy metal pollution is a significant environmental concern with detrimental effects on ecosystems and human health, and traditional remediation methods may be costly, energy-intensive, or have limited effectiveness. The current study aims were to investigate the impact of heavy metal toxicity in Eisenia fetida, the growth, reproductive outcomes, and their role in soil remediation. Various concentrations (ranging from 0 to 640 mg per kg of soil) of each heavy metal were incorporated into artificially prepared soil, and vermi-remediation was conducted over a period of 60 days. The study examined the effects of heavy metals on the growth and reproductive capabilities of E. fetida, as well as their impact on the organism through techniques such as FTIR, histology, and comet assay. Atomic absorption spectrometry demonstrated a significant (P < 0.000) reduction in heavy metal concentrations in the soil as a result of E. fetida activity. The order of heavy metal accumulation by E. fetida was found to be Cr > Cd > Pb. Histological analysis revealed a consistent decline in the organism's body condition with increasing concentrations of heavy metals. However, comet assay results indicated that the tested levels of heavy metals did not induce DNA damage in E. fetida. FTIR analysis revealed various functional group peaks, including N-H and O-H groups, CH2 asymmetric stretching, amide I and amide II, C-H bend, carboxylate group, C-H stretch, C-O stretching of sulfoxides, carbohydrates/polysaccharides, disulfide groups, and nitro compounds, with minor shifts indicating the binding or accumulation of heavy metals within E. fetida. Despite heavy metal exposure, no significant detrimental effects were observed, highlighting the potential of E. fetida for sustainable soil remediation. Vermi-remediation with E. fetida represents a novel, sustainable, and cutting-edge technology in environmental cleanup. This study found that E. fetida can serve as a natural and sustainable method for remediating heavy metal-contaminated soils, promising a healthier future for soil.


Asunto(s)
Restauración y Remediación Ambiental , Metales Pesados , Oligoquetos , Reproducción , Contaminantes del Suelo , Oligoquetos/efectos de los fármacos , Metales Pesados/toxicidad , Animales , Contaminantes del Suelo/toxicidad , Reproducción/efectos de los fármacos , Restauración y Remediación Ambiental/métodos , Ensayo Cometa , Espectroscopía Infrarroja por Transformada de Fourier , Daño del ADN , Suelo/química
3.
Saudi Pharm J ; 32(7): 102109, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38817821

RESUMEN

KDM2B, a histone lysine demethylase, is expressed in a plethora of cancers. Earlier studies from our group, have showcased that overexpression of KDM2B in the human prostate cancer cell line DU-145 is associated with cell adhesion, actin reorganization, and improved cancer cell migration. In addition, we have previously examined changes of cytosolic Ca2+, regulated by the pore-forming proteins ORAI and the Ca2+ sensing stromal interaction molecules (STIM), via store-operated Ca2+ entry (SOCE) in wild-type DU-145. This study sought to evaluate the impact of KDM2B overexpression on the expression of key molecules (SGK1, Nhe1, Orai1, Stim1) and SOCE. Furthermore, this is the first study to evaluate KDM2B expression in circulating tumor cells (CTCs) from patients with prostate cancer. mRNA levels for SGK1, Nhe1, Orai1, and Stim1 were quantified by RT-PCR. Calcium signals were measured in KDM2B-overexpressing DU-145 cells, loaded with Fura-2. Blood samples from 22 prostate cancer cases were scrutinized for KDM2B expression using immunofluorescence staining and the VyCAP system. KDM2B overexpression in DU-145 cells increased Orai1, Stim1, and Nhe1 mRNA levels and significantly decreased Ca2+ release. KDM2B expression was examined in 22 prostate cancer patients. CTCs were identified in 45 % of these patients. 80 % of the cytokeratin (CK)-positive patients and 63 % of the total examined CTCs exhibited the (CK + KDM2B + CD45-) phenotype. To conclude, this study is the first to report increased expression of KDM2B in CTCs from patients with prostate cancer, bridging in vitro and preclinical assessments on the potentially crucial role of KDM2B on migration, invasiveness, and ultimately metastasis in prostate cancer.

4.
Microb Pathog ; 185: 106389, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37839761

RESUMEN

The SARS-CoV-2 virus gains entry into human cells by exploiting the angiotensin-converting enzyme 2 (ACE2), a key component known as the spike protein (S), as a point of entry. Initially, SARS-CoV-2 suppresses the natural function of ACE2, leading to a gradual decline in cell health. Additionally, individuals with cancer are considered more susceptible to COVID-19. This study investigates the expression patterns of ACE2 in colorectal cancer (CRC) patients with and without a history of COVID-19 infection. RT-PCR was used to analyze samples from both cancerous and adjacent non-affected colorectal tissues of 47 CRC patients, comprising two groups: 24 CRC patients with no history of COVID-19 and 23 CRC patients with a recent history of COVID-19 infection. Epithelial CR cells were isolated from both types of tissues and cultured to evaluate cell adhesion. Immunohistochemistry analyses were conducted to examine ACE2 protein expression using various ACE2 antibodies for both cell types. The study revealed ACE2 mRNA expression in all CRC tissues of patients with and without a history of COVID-19. ACE2 expression was significantly higher in CRC patients without a history of COVID-19. Notably, the non-affected colorectal cancer (NACRC) tissues of patients without a history of COVID-19 also showed ACE2 expression, whereas no ACE2 expression was detected in the biopsies of CRC patients with a positive COVID-19 history. ACE2 antibodies were employed to validate ACE2 protein expression at the mRNA level. COVID-19 appears to downregulate ACE2 expression in both CRC and NACRC tissues of CRC patients with a positive history of COVID-19 infection.


Asunto(s)
COVID-19 , Neoplasias Colorrectales , Humanos , SARS-CoV-2/genética , Enzima Convertidora de Angiotensina 2/genética , ARN Mensajero/genética , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo
5.
Environ Res ; 237(Pt 2): 117017, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37652220

RESUMEN

In recent times, the herbicide atrazine (ATZ) has been commonly used before and after the cultivation of crop plants to manage grassy weeds. Despite its effect, the toxic residues of ATZ affect soil fertility and crop yield. Hence, the current study is focused on providing insight into the degradation mechanism of the herbicide atrazine through bacterial chemotaxis involving intermediates responsive to degradation. A bacterium was isolated from ATZ-contaminated soil and identified as Pseudomonas stutzeri based on its morphology, biochemical and molecular characterization. Upon ultra-performance liquid chromatography analysis, the free cells of isolated bacterium strain was found to utilize 174 µg/L of ATZ after 3-days of incubation on a mineral salt medium containing 200 µg/L of ATZ as a sole carbon source. It was observed that immobilized based degradation of ATZ yielded 198 µg/L and 190 µg/L by the cells entrapped with silica beads and sponge, respectively. Furthermore, the liquid chromatography-mass spectroscopy revealed that the secretion of three significant metabolites, namely, cyanuric acid, hydroxyatrazine and N- N-Isopropylammelide is responsive to the biodegradation of ATZ by the bacterium. Collectively, this research demonstrated that bacterium strains are the most potent agent for removing toxic pollutants from the environment, thereby enhancing crop yield and soil fertility with long-term environmental benefits.

6.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36674852

RESUMEN

Neurodegenerative diseases (NDs) are a major cause of disability and are related to brain development. The neurological signs of brain lesions can vary from mild clinical shortfalls to more delicate and severe neurological/behavioral symptoms and learning disabilities, which are progressive. In this paper, we have tried to summarize a collective view of various NDs and their possible therapeutic outcomes. These diseases often occur as a consequence of the misfolding of proteins post-translation, as well as the dysfunctional trafficking of proteins. In the treatment of neurological disorders, a challenging hurdle to cross regarding drug delivery is the blood-brain barrier (BBB). The BBB plays a unique role in maintaining the homeostasis of the central nervous system (CNS) by exchanging components between the circulations and shielding the brain from neurotoxic pathogens and detrimental compounds. Here, we outline the current knowledge about BBB deterioration in the evolving brain, its origin, and therapeutic interventions. Additionally, we summarize the physiological scenarios of the BBB and its role in various cerebrovascular diseases. Overall, this information provides a detailed account of BBB functioning and the development of relevant treatments for neurological disorders. This paper will definitely help readers working in the field of neurological scientific communities.


Asunto(s)
Enfermedades del Sistema Nervioso , Humanos , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Enfermedades del Sistema Nervioso/metabolismo , Encéfalo/metabolismo , Barrera Hematoencefálica/metabolismo , Sistema Nervioso Central , Sistemas de Liberación de Medicamentos
7.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36835252

RESUMEN

We examined the photodynamic activation of Curcumin under blue light in glioblastoma T98G cells. The therapeutic effect of Curcumin, in both the absence and presence of blue light, was measured by the MTT assay and apoptosis progression using flow cytometry. Fluorescence imaging was carried out to evaluate Curcumin uptake. Photodynamic activation of Curcumin (10 µM), in the presence of blue light, enhanced its cytotoxic effect, resulting in the activation of ROS-dependent apoptotic pathways in T98G cells. The gene expression studies showed the expression of matrixes metalloproteinase 2 (MMP2) and 9 (MMP9) decrease with Curcumin (10 µM) under blue light exposure, indicating possible proteolytic mechanisms. Moreover, the cytometric appearance displayed that the expressions of NF-κB and Nrf2 were found to be increased upon exposure to blue light, which revealed a significant induction of expression of nuclear factor as a result of blue-light-induced oxidative stress and cell death. These data further demonstrate that Curcumin exhibited a photodynamic effect via induction of ROS-mediated apoptosis in the presence of blue light. Our results suggest that the application of blue light enhances the therapeutic efficacy of Curcumin in glioblastoma because of the phototherapeutic effect.


Asunto(s)
Curcumina , Glioblastoma , Fotoquimioterapia , Humanos , Apoptosis , Línea Celular , Línea Celular Tumoral , Curcumina/farmacología , Curcumina/uso terapéutico , Regulación hacia Abajo , Glioblastoma/tratamiento farmacológico , Metaloproteinasa 2 de la Matriz/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Fotoquimioterapia/métodos
8.
Medicina (Kaunas) ; 59(5)2023 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-37241227

RESUMEN

Background and Objectives: Colon cancer (CC) is the second most common cancer in Saudi Arabia, and the number of new cases is expected to increase by 40% by 2040. Sixty percent of patients with CC are diagnosed in the late stage, causing a reduced survival rate. Thus, identifying a new biomarker could contribute to diagnosing CC in the early stages, leading to delivering better therapy and increasing the survival rate. Materials and Methods: HSPB6 expression was investigated in extracted RNA taken from 10 patients with CC and their adjacent normal tissues, as well as in DMH-induced CC and a colon treated with saline taken from a male Wistar rat. Additionally, the DNA of the LoVo and Caco-2 cell lines was collected, and bisulfite was converted to measure the DNA methylation level. This was followed by applying 5-aza-2'-deoxycytidine (AZA) to the LoVo and Caco-2 cell lines for 72 h to see the effect of DNA methylation on HSPB6 expression. Finally, the GeneMANIA database was used to find the interacted genes at transcriptional and translational levels with HSPB6. Results: We found that the expression of HSPB6 was downregulated in 10 CC tissues compared to their adjacent normal colon tissues, as well as in the in vivo study, where its expression was lower in the colon treated with the DMH agent compared to the colon treated with saline. This suggests the possible role of HSPB6 in tumor progression. Moreover, HSPB6 was methylated in two CC cell lines (LoVo and Caco-2), and demethylation with AZA elevated its expression, implying a mechanistic association between DNA methylation and HSPB6 expression. Conclusions: Our findings indicate that HSPB6 is adversely expressed with tumor progression, and its expression may be controlled by DNA methylation. Thus, HSPB6 could be a good biomarker employed in the CC diagnostic process.


Asunto(s)
Neoplasias del Colon , Humanos , Ratas , Animales , Masculino , Decitabina/farmacología , Células CACO-2 , Línea Celular Tumoral , Regiones Promotoras Genéticas , Ratas Wistar , Neoplasias del Colon/genética , Metilación de ADN , Regulación Neoplásica de la Expresión Génica , Proteínas del Choque Térmico HSP20/genética
9.
Environ Res ; 210: 112979, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35218714

RESUMEN

In this present scenario, hydroxyapatite (HAp) nanostructures were synthesized through green routes for biomedical applications, particularly remediation towards human pathogens and cancer cells. The present study aims at forming non-toxic and eco-friendly silver (Ag+) doped HAp using Polyethylene glycol (PEG), Cetyl Trimethyl ammonium bromide (CTAB) and curcumin. Ag+ doped HAp nanoparticles (NPs) were prepared by the sol-gel method with a cube and rod-like morphology. Ag-HApNPs showed a sharp and well-defined diffraction peak, which possesses the hexagonal crystalline structure with space group P63/m. The Fourier-transform infrared spectroscopy and Raman spectra confirmed the formation of Ag-HApNPs, and the bandgap values were obtained using UV-DRS analysis. The Ag-HApNPs with PEG, CTAB and curcumin might be fabricated materials were examined against antibacterial, antifungal, antioxidant, and cytotoxic activities, which provided exemplary biomedical applications. Overall, Ag-HApNPs can be used as potential drug delivery and perspectives to control multidrug-resistant pathogens.


Asunto(s)
Curcumina , Nanopartículas del Metal , Nanopartículas , Antibacterianos/química , Antibacterianos/farmacología , Cetrimonio , Curcumina/farmacología , Durapatita/química , Humanos , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
10.
Molecules ; 27(10)2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35630588

RESUMEN

The Arabian desert is rich in different species of medicinal plants, which approved variable antimicrobial activities. Phoenix dactylifera L. is one of the medical trees rich in phenolic acids and flavonoids. The current study aimed to assess the antibacterial and antifungal properties of the silver nanoparticles (AgNPs) green-synthesized by two preparations (ethanolic and water extracts) from palm leaves. The characteristics of the produced AgNPs were tested by UV-visible spectroscopy and Transmitted Electron Microscopy (TEM). The antifungal activity of Phoenix dactylifera L. was tested against different species of Candida. Moreover, its antibacterial activity was evaluated against two Gram-positive and two Gram-negative strains. The results showed that AgNPs had a spherical larger shape than the crude extracts. AgNPs, from both preparations, had significant antimicrobial effects. The water extract had slightly higher antimicrobial activity than the ethanolic extract, as it induced more inhibitory effects against all species. That suggests the possible use of palm leaf extracts against different pathogenic bacteria and fungi instead of chemical compounds, which had economic and health benefits.


Asunto(s)
Nanopartículas del Metal , Phoeniceae , Antibacterianos/química , Antibacterianos/farmacología , Antifúngicos/farmacología , Nanopartículas del Metal/química , Phoeniceae/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Arabia Saudita , Plata/química , Plata/farmacología , Árboles , Agua
11.
Saudi Pharm J ; 30(11): 1665-1671, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36465840

RESUMEN

5-fluorouracil (5FU) is widely used to treat colorectal cancer (CC) and its main mechanisms of anticancer action are through generation of ROS which often result in inflammation. Here, we test the effect of Lycopene against 5FU in Caco2 cell line. Caco2 cells were exposed to 3 µg/ml of 5FU alone or with 60, 90, 120 µg/ml of lycopene. This was followed by assessment of cytotoxicity, oxidative stress, and gene expression of inflammatory genes. Our findings showed that Lycopene and 5FU co-exposure induced dose-dependent cytotoxic effect without compromising the membrane integrity based on the LDH assay. Lycopene also significantly enhanced 5FU-induced SOD activity and GSH level compared to control for all mixture concentrations (p < 0.01). Lycopene alone and combination with 5FU-induced expression of IL-1ß, TNF-α, and IL-6. Furthermore, IFN-γ expression was significantly enhanced by only mixture of lycopene (90 µg/ml) and 5FU (p < 0.05). In conclusion, Lycopene supplementation with 5FU therapy resulted in improvement in antioxidant parameters such as catalase and GSH levels giving the cell capacity to cope with 5FU-mediated oxidative stress. Lycopene also enhanced IFN-γ expression in the presence of 5FU, which may activate antitumor effects further enhancing the cancer killing effect of 5FU.

12.
Scand J Med Sci Sports ; 31(9): 1774-1781, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33914964

RESUMEN

OBJECTIVE: The Fédération International de Football Association (FIFA) 11+ Referees Injury Prevention Program (FIFA 11+ Referees Program) is a structured warm-up program specially designed to prevent injuries in soccer referees. However, its effectiveness has yet to be fully documented in the literature. Therefore, the purpose of this study was to investigate the effectiveness of the FIFA 11+ Referees Program in reducing injury rates among soccer referees. METHODS: A randomized controlled trial was conducted. Two hundred male amateur soccer referees (mean ± SD age, 31.6 ± 4.1 years) participated in this study. Participants were randomly allocated to the experimental and control groups. The experimental group performed the FIFA 11+ Referees Program as a warm-up during training sessions at least twice a week, and the control group performed their usual warm-ups. The participants were followed up for one season. The outcome measures were the incidence of overall injury, initial injury, recurrent injury, injury mechanism, and injury severity (primary), and the rate of adherence to the intervention program (secondary). RESULTS: A total of 24 injuries were reported among 100 referees in the control group in 16 606 h of exposure (1.45 injuries/1000 exposure h), and a total of nine injuries were reported across 100 referees within the experimental group in 17 834 exposure h (0.50 injuries/1000 exposure h). The Injury Risk Ratio (IRR) was 0.35 (95% CI 0.26-0.45). CONCLUSION: The results indicated that the FIFA 11+ Referees Program effectively reduced injuries in the experimental group by 65% compared to the control group.


Asunto(s)
Traumatismos Ocupacionales/prevención & control , Evaluación de Programas y Proyectos de Salud , Fútbol/lesiones , Ejercicio de Calentamiento , Adulto , Distribución por Edad , Traumatismos en Atletas/epidemiología , Traumatismos en Atletas/prevención & control , Humanos , Incidencia , Puntaje de Gravedad del Traumatismo , Agencias Internacionales , Masculino , Traumatismos Ocupacionales/epidemiología , Evaluación de Resultado en la Atención de Salud , Distribución de Poisson , Fútbol/estadística & datos numéricos , Factores de Tiempo
13.
Environ Toxicol ; 36(5): 811-820, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33331091

RESUMEN

The thyroid cancer, especially papillary thyroid cancers are very common among population with high intake of iodine or iodine uptake. Even though several treatment options are available, there is still complication and side effects are still persistent. The role of signaling molecules in cancer signaling is very vast and their significance in progression of disease was increasing which leads to mortality of the patient. The major key players are PI3K, AKT and MAP kinase, involves in cell survival, proliferation, and inhibition of apoptosis and are the promising candidate for cancer treatment target, several researchers focuses these molecule to treat various acute and chronic diseases like cancer. On the other side, various literatures propose that natural compounds derived from plant source are shown potent anticancer property against several cancers. In our study we are looking in to one such active principle obtained from plant source, a diterpenoid compound kirenol, and its role thyroid cancer. Here, we report that kirenol role on various cellular mechanisms like induction of apoptosis, enhancing ROS indirectly by inhibiting antioxidants, altering the signaling mechanism of cell survival and apoptosis. Our study proposes that kirenol involved in the cancer cell cytotoxicity by inducing apoptosis and inhibition of cancer cell survival. Thus, targeting this signaling molecule with kirenol definitely favors and may lead to a therapeutic modality for thyroid cancer.


Asunto(s)
Diterpenos , Neoplasias de la Tiroides , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Diterpenos/farmacología , Humanos , Sistema de Señalización de MAP Quinasas , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias de la Tiroides/tratamiento farmacológico
14.
Environ Toxicol ; 36(5): 782-788, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33331035

RESUMEN

Ulcerative colitis (UC) is the major type of inflammatory ailment with elevated prevalence worldwide. Dieckol (DEK) is a phlorotannin that is extensively found in marine algae and has been found to have different pharmacological properties. Nevertheless, the impact of DEK in UC has not been investigated earlier. Therefore, we appraised DEK's function in dextran sulfate sodium (DSS)-induced UC in the mouse. An overall of 30 mice was randomized into 5 equal groups. Control mice treated with a standard diet (group I), colitis mice challenged with 3% of DSS through drinking water for 7 consecutive days (group II), DEK was supplemented via oral gavage from day 1 to 10 at the dosages of 5, 10, and 15 mg/kg b.wt, respectively. All animals were sacrificed on the 11th day. The body weight (bwt), colon length, disease activity index, malondialdehyde (MDA), myeloperoxidase (MPO), and histological features were observed using suitable techniques, and COX-2 expression was investigated by immunohistochemistry. Moreover, TNF-α, IL-1ß, p65, IκBα, HO-1, and Nrf2 expressions were measured using ELISA and RT-PCR techniques, respectively. DEK treatment to the colitis mice considerably lessened, DSS-challenged alterations in body weight, DAI, colonic length shortening and histological changes. DEK exhibited potent antioxidant effects due to the reduced MDA and MPO, and Nrf2 expression markers while the HO-1 marker was augmented. Additionally, DEK also suppressed the expression s of TNF-α, IL-1ß, and the p-p65, p-IκBα, and p65 and augmented the expression of IκBα, which eventually proved the anti-inflammatory potential of DEK against the DSS-challenge. Based on these results, DEK has been found effective in mitigating colitis, conceivably alleviating colon inflammation through the NF-κB inhibition and triggering of Nrf2/HO-1 signaling cascade.


Asunto(s)
Colitis , Factor 2 Relacionado con NF-E2 , Animales , Benzofuranos , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/prevención & control , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Ratones , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Transducción de Señal
15.
Molecules ; 26(21)2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34771072

RESUMEN

The synthesis of nanoparticles is most important in the context of cancer therapy, particularly copper nanoparticles, which are widely used. In this work, copper(II)-tyrosinase was isolated from potato peel powder. Copper nanoparticles (Tyr-Cu(II)-AEEA NPs) were synthesized via the reaction of tyrosinase with N-aminoethylethanolamine to produce Cu(II)-NPs and these were characterized by means of FT-IR, UV-Spectroscopy, XRD, SEM, TEM and a particle size analyzer. These Tyr-Cu(II)-AEEA NPs were tested as anticancer agents against MCF-7 breast cancer cells. Fluorescence microscopy and DNA fragmentation were also performed, which revealed the inhibiting potentials of Cu(II)-AEEA NPs and consequent cell death; Tyr-Cu(II)-AEEA NPs show potential cytotoxicity activity and this nano material could be contemplated as an anticancer medicament in future investigations.


Asunto(s)
Antineoplásicos/farmacología , Complejos de Coordinación/farmacología , Cobre/farmacología , Etanolaminas/farmacología , Nanopartículas del Metal/química , Monofenol Monooxigenasa/metabolismo , Solanum tuberosum/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Proliferación Celular/efectos de los fármacos , Complejos de Coordinación/química , Complejos de Coordinación/metabolismo , Cobre/química , Cobre/metabolismo , Ensayos de Selección de Medicamentos Antitumorales , Etanolaminas/química , Etanolaminas/metabolismo , Femenino , Humanos , Células MCF-7 , Microscopía Fluorescente , Solanum tuberosum/química
17.
Environ Toxicol ; 35(3): 359-367, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31710160

RESUMEN

Multi-walled carbon nanotubes (MWCNTs) have many applications in industry and used as additives in polymers, catalysts, anodes in lithium-battery and drug delivery. There is little information about MWCNTs' (210 nm) genotoxic potential on juvenile freshwater fish Channa punctatus. Therefore, in this study, we have determined the toxic effects of MWCNTs on freshwater fish C. punctatus by assessing toxicological endpoints such as oxidative stress, mutagenicity, and genotoxicity after acute MWCNTs exposure for 5 days. MWCNTs LC50 -96 hours value for C. punctatus was 21.8 mg/L and on this basis three different MWCNTs concentrations were selected, that is, sub-lethal I, II, and III, for 5-days exposure trials with C. punctatus. The level of lipid peroxidation increased in the gills and kidney of exposed fish at sub-lethal concentrations II and III. Contrastingly, glutathione decreased more in the gills than in the kidney. The activity of catalase enzymes decreased more in the gills than in the kidney at sublethal concentrations I and II. Glutathione S-transferase decreased in gill tissue but increased in kidney tissue following sub-lethal III exposure. Moreover, the level of glutathione reductase decreased in both tissues. In addition, MWCNTs genotoxicity was confirmed by DNA damage in lymphocytes, gills, kidney cells, and production of micronuclei (MNi) in red blood cells of freshwater fish following sub-lethal I, II, and III exposures. In conclusion, this study revealed that application of micronucleus and comet assays for in vivo laboratory studies using freshwater fish for screening the genotoxic potential of MWCNTs.


Asunto(s)
Daño del ADN , Peces , Nanotubos de Carbono/toxicidad , Estrés Oxidativo , Animales , Ensayo Cometa , Peces/genética , Peces/crecimiento & desarrollo , Peces/metabolismo , Branquias/efectos de los fármacos , Branquias/metabolismo , Glutatión/metabolismo , Riñón/efectos de los fármacos , Riñón/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Pruebas de Micronúcleos , Mutágenos/toxicidad
18.
Environ Toxicol ; 35(9): 930-941, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32309901

RESUMEN

Platinum nanoparticles (PtNPs) attract much attention due to their excellent biocompatibility and catalytic properties, but their toxic effects on normal (CHANG) and cancerous (HuH-7) human liver cells are meagre. The cytotoxic and apoptotic effects of PtNPs (average size, 3 nm) were determined in CHANG and HuH-7 cells. After treating these cells were with PtNPs (10, 50, 100, 200, and 300 µg/mL) for 24 and 48 hours, we observed dose- and time-dependent cytotoxicity, as evaluated by using (3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide, a tetrazole) (MTT) and neutral red uptake (NRU) assays. The production of reactive oxygen species (ROS) was increased in both cells after treatment with the above dose of PtNPs for 24 and 48 hours. Determination of morphological changes of cells, chromosome condensation, mitochondrial membrane potential, and caspase-3 assays showed that PtNPs induce cytotoxicity and apoptosis in CHANG and HuH-7 cells by altering the cell morphology and density, increasing cell population in apoptosis, and causing chromosome condensation. Furthermore, we have studied fragmentation of DNA using alkaline single cell gel electrophoresis and expression of apoptotic genes by real-time PCR (RT-PCR). The percentage of DNA fragmentation was more at 300 µg/mL for 48 hours in both cells, but slightly more fragmentation was found in HuH-7 relative to CHANG cells. Considering all of the above parameters, PtNPs elicited cytotoxicity on CHANG and HuH-7 cells by blocking cell proliferation and inducing apoptosis. Thus this study may be useful in in vitro laboratory studies using cell lines for screening the genotoxic and apoptotic potential of nanoparticles.


Asunto(s)
Apoptosis/efectos de los fármacos , Daño del ADN , Expresión Génica/efectos de los fármacos , Hígado/efectos de los fármacos , Nanopartículas del Metal/química , Estrés Oxidativo/efectos de los fármacos , Platino (Metal)/farmacología , Apoptosis/genética , Caspasa 3/genética , Caspasa 3/metabolismo , Muerte Celular , Línea Celular Tumoral , Fragmentación del ADN/efectos de los fármacos , Humanos , Hígado/metabolismo , Hígado/patología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Estrés Oxidativo/genética , Platino (Metal)/química , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
19.
Molecules ; 25(24)2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33322433

RESUMEN

In this study, the synthesis of one-pot 10-phenyl-3,4,6,7-tetrahydro-1H-spiro [acridine-9,2'-indoline]-1,3,8-trione derivatives was achieved via a four-component cyclocondensation reaction, which was carried out in solvent-free conditions, and using p-toluenesulfonic acid (p-TSA) as a catalyst. The product was confirmed by FT-IR, 1H-NMR, 13C-NMR, mass spectra, and elemental analysis. Furthermore, the anticancer activity was screened for all compounds. Among these compounds, compound 1c was more effective (GI50 0.01 µm) against MCF-7 cancer cell lines than standard and other compounds. Therefore, the objective of this study was achieved with a few promising molecules having been demonstrated to be potential anticancer agents.


Asunto(s)
Antineoplásicos/farmacología , Técnicas de Química Sintética , Ensayos de Selección de Medicamentos Antitumorales , Compuestos de Espiro/farmacología , Bencenosulfonatos/química , Catálisis , Técnicas Químicas Combinatorias , Diseño de Fármacos , Humanos , Células MCF-7 , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Estructura Molecular , Solventes , Espectroscopía Infrarroja por Transformada de Fourier , Compuestos de Espiro/química
20.
Breast Cancer Res ; 21(1): 86, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31370904

RESUMEN

BACKGROUND: Circulating tumor cells (CTCs) are important for metastatic dissemination of cancer. They can provide useful information, regarding biological features and tumor heterogeneity; however, their detection and characterization are difficult due to their limited number in the bloodstream and their mesenchymal characteristics. Therefore, new biomarkers are needed to address these questions. METHODS: Bioinformatics functional enrichment analysis revealed a subgroup of 24 genes, potentially overexpressed in CTCs. Among these genes, the chemokine receptor CXCR4 plays a central role. After prioritization according to the CXCR4 corresponding pathways, five molecules (JUNB, YWHAB, TYROBP, NFYA, and PRDX1) were selected for further analysis in biological samples. The SKBR3, MDA-MB231, and MCF7 cell lines, as well as PBMCs from normal (n = 10) blood donors, were used as controls to define the expression pattern of all the examined molecules. Consequently, 100 previously untreated metastatic breast cancer (mBC) patients (n = 100) were analyzed using the following combinations of antibodies: CK (cytokeratin)/CXCR4/JUNB, CK/NFYA/ΥWHΑΒ (14-3-3), and CK/TYROBP/PRDX1. A threshold value for every molecule was considered the mean expression in normal PBMCs. RESULTS: Quantification of CXCR4 revealed overexpression of the receptor in SKBR3 and in CTCs, following the subsequent scale (SKBR3>CTCs>Hela>MCF7>MDA-MB231). JUNB was also overexpressed in CTCs (SKBR3>CTCs>MCF7>MDA-MB231>Hela). According to the defined threshold for each molecule, CXCR4-positive CTCs were identified in 90% of the patients with detectable tumor cells in their blood. In addition, 65%, 75%, 14.3%, and 12.5% of the patients harbored JUNB-, TYROBP-, NFYA-, and PRDX-positive CTCs, respectively. Conversely, none of the patients revealed YWHAB-positive CTCs. Interestingly, JUNB expression in CTCs was phenotypically and statistically enhanced compared to patients' blood cells (p = 0.002) providing a possible new biomarker for CTCs. Furthermore, the detection of JUNB-positive CTCs in patients was associated with poorer PFS (p = 0.015) and OS (p = 0.002). Moreover, JUNB staining of 11 primary and 4 metastatic tumors from the same cohort of patients revealed a dramatic increase of JUNB expression in metastasis. CONCLUSIONS: CXCR4, JUNB, and TYROBP were overexpressed in CTCs, but only the expression of JUNB was associated with poor prognosis, providing a new biomarker and a potential therapeutic target for the elimination of CTCs.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama/genética , Neoplasias de la Mama/mortalidad , Factores de Transcripción/genética , Anciano , Anciano de 80 o más Años , Neoplasias de la Mama/patología , Línea Celular Tumoral , Biología Computacional/métodos , Femenino , Perfilación de la Expresión Génica , Humanos , Clasificación del Tumor , Estadificación de Neoplasias , Fenotipo , Pronóstico , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Análisis de Supervivencia , Factores de Transcripción/metabolismo , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA