Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 11(3): e1005120, 2015 03.
Artículo en Inglés | MEDLINE | ID: mdl-25815810

RESUMEN

Anaplasma phagocytophilum is an emerging pathogen that causes human granulocytic anaplasmosis. Infection with this zoonotic pathogen affects cell function in both vertebrate host and the tick vector, Ixodes scapularis. Global tissue-specific response and apoptosis signaling pathways were characterized in I. scapularis nymphs and adult female midguts and salivary glands infected with A. phagocytophilum using a systems biology approach combining transcriptomics and proteomics. Apoptosis was selected for pathway-focused analysis due to its role in bacterial infection of tick cells. The results showed tissue-specific differences in tick response to infection and revealed differentiated regulation of apoptosis pathways. The impact of bacterial infection was more pronounced in tick nymphs and midguts than in salivary glands, probably reflecting bacterial developmental cycle. All apoptosis pathways described in other organisms were identified in I. scapularis, except for the absence of the Perforin ortholog. Functional characterization using RNA interference showed that Porin knockdown significantly increases tick colonization by A. phagocytophilum. Infection with A. phagocytophilum produced complex tissue-specific alterations in transcript and protein levels. In tick nymphs, the results suggested a possible effect of bacterial infection on the inhibition of tick immune response. In tick midguts, the results suggested that A. phagocytophilum infection inhibited cell apoptosis to facilitate and establish infection through up-regulation of the JAK/STAT pathway. Bacterial infection inhibited the intrinsic apoptosis pathway in tick salivary glands by down-regulating Porin expression that resulted in the inhibition of Cytochrome c release as the anti-apoptotic mechanism to facilitate bacterial infection. However, tick salivary glands may promote apoptosis to limit bacterial infection through induction of the extrinsic apoptosis pathway. These dynamic changes in response to A. phagocytophilum in I. scapularis tissue-specific transcriptome and proteome demonstrated the complexity of the tick response to infection and will contribute to characterize gene regulation in ticks.


Asunto(s)
Anaplasma phagocytophilum/genética , Anaplasmosis/genética , Apoptosis/genética , Biología de Sistemas , Anaplasma phagocytophilum/patogenicidad , Anaplasmosis/microbiología , Anaplasmosis/transmisión , Animales , Diferenciación Celular/genética , Femenino , Regulación de la Expresión Génica , Humanos , Insectos Vectores/genética , Insectos Vectores/microbiología , Ixodes/microbiología , Especificidad de Órganos , Interferencia de ARN , Glándulas Salivales/metabolismo , Glándulas Salivales/microbiología , Transducción de Señal/genética , Transcriptoma/genética
2.
Mol Cell Proteomics ; 14(12): 3154-72, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26424601

RESUMEN

Anaplasma phagocytophilum is an emerging zoonotic pathogen that causes human granulocytic anaplasmosis. These intracellular bacteria establish infection by affecting cell function in both the vertebrate host and the tick vector, Ixodes scapularis. Previous studies have characterized the tick transcriptome and proteome in response to A. phagocytophilum infection. However, in the postgenomic era, the integration of omics datasets through a systems biology approach allows network-based analyses to describe the complexity and functionality of biological systems such as host-pathogen interactions and the discovery of new targets for prevention and control of infectious diseases. This study reports the first systems biology integration of metabolomics, transcriptomics, and proteomics data to characterize essential metabolic pathways involved in the tick response to A. phagocytophilum infection. The ISE6 tick cells used in this study constitute a model for hemocytes involved in pathogen infection and immune response. The results showed that infection affected protein processing in endoplasmic reticulum and glucose metabolic pathways in tick cells. These results supported tick-Anaplasma co-evolution by providing new evidence of how tick cells limit pathogen infection, while the pathogen benefits from the tick cell response to establish infection. Additionally, ticks benefit from A. phagocytophilum infection by increasing survival while pathogens guarantee transmission. The results suggested that A. phagocytophilum induces protein misfolding to limit the tick cell response and facilitate infection but requires protein degradation to prevent ER stress and cell apoptosis to survive in infected cells. Additionally, A. phagocytophilum may benefit from the tick cell's ability to limit bacterial infection through PEPCK inhibition leading to decreased glucose metabolism, which also results in the inhibition of cell apoptosis that increases infection of tick cells. These results support the use of this experimental approach to systematically identify cell pathways and molecular mechanisms involved in tick-pathogen interactions. Data are available via ProteomeXchange with identifier PXD002181.


Asunto(s)
Anaplasma phagocytophilum/fisiología , Ehrlichiosis/veterinaria , Metabolómica/métodos , Proteómica/métodos , Garrapatas/microbiología , Animales , Línea Celular , Ehrlichiosis/genética , Ehrlichiosis/metabolismo , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Glucosa/metabolismo , Interacciones Huésped-Patógeno , Redes y Vías Metabólicas , Biología de Sistemas/métodos
3.
Int J Syst Evol Microbiol ; 66(3): 1426-1430, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26763978

RESUMEN

Recently, we obtained a rickettsial isolate (Ehrlichia sp. UFMG-EVT) from the haemolymph of engorged Rhipicephalus microplus tick females. On the basis of maximum-likelihood phylogenetic analysis using 16S rRNA gene, groEL, dsb, gltA and trp36 sequences we showed that Ehrlichia sp. UFMG-EVT belongs to the α-Proteobacteria, family Anaplasmataceae, genus Ehrlichia. Ehrlichia sp. UFMG-EVT is a sister taxon of Ehrlichia canis with 16S rRNA gene, groEL, dsb, gltA and trp36 sequence similarities of 98.3 %, 97.2 %, 94.7 %, 94.3 % and 49.1 %, respectively. Ehrlichia sp. UFMG-EVT has been maintained in the laboratory by continuous passage in the IDE8 tick cell line where the ultrastructure was characterized using electron microscopy and was found to resemble that of E. canis, Ehrlichia muris and Ehrlichia chaffeensis, but not Ehrlichia ruminantium and Ehrlichia ewingii. We propose the name Ehrlichia minasensis sp. nov. for this bacterium to acknowledge the place from where it was initially isolated, Minas Gerais, Brazil. The type strain is strain Ehrlichia sp. UFMG-EVT ( = DSM 100393T = TCB-TBB-0018T).

4.
J Gen Virol ; 96(Pt 7): 1676-81, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25701823

RESUMEN

In 2011, a neurological disease was reported in a herd of goats (Capra hircus) in Asturias, Spain. Initial sequencing identified the causative agent as louping ill virus (LIV). Subsequently, with the application of whole genome sequencing and phylogenetic analysis, empirical data demonstrates that the LIV-like virus detected is significantly divergent from LIV and Spanish sheep encephalitis virus (SSEV). This virus encoded an amino acid sequence motif at the site of a previously identified marker for differentiating tick-borne flaviviruses that was shared with a virus previously isolated in Ireland in 1968. The significance of these observations reflects the diversity of tick-borne flaviviruses in Europe. These data also contribute to our knowledge of the evolution of tick-borne flaviviruses and could reflect the movement of viruses throughout Europe. Based on these observations, the proposed name for this virus is Spanish goat encephalitis virus (SGEV), to distinguish it from SSEV.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas/aislamiento & purificación , Encefalitis Transmitida por Garrapatas/veterinaria , Genoma Viral , Enfermedades de las Cabras/virología , Cabras/virología , ARN Viral/genética , Análisis de Secuencia de ADN , Animales , Análisis por Conglomerados , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Encefalitis Transmitida por Garrapatas/virología , Irlanda , Datos de Secuencia Molecular , Filogenia , Homología de Secuencia , España
5.
Vaccine ; 42(11): 2801-2809, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38508929

RESUMEN

Ticks as obligate blood-feeding arthropod vectors of pathogenic viruses, bacteria, protozoa and helminths associated with prevalent tick-borne diseases (TBDs) worldwide. These arthropods constitute the second vector after mosquitoes that transmit pathogens to humans and the first vector in domestic animals. Vaccines constitute the safest and more effective approach to control tick infestations and TBDs, but research is needed to identify new antigens and improve vaccine formulations. The tick protein Subolesin (Sub) is a well-known vaccine protective antigen with a highly conserved sequence at both gene and protein levels in the Ixodidae and among arthropods and vertebrates. In this study, transcriptomics and proteomics analyses were conducted together with graph theory data analysis in wild type and Sub knockdown (KD) tick ISE6 cells in order to identify and characterize the functional implications of Sub in tick cells. The results support a key role for Sub in the regulation of gene expression in ticks and the relevance of this antigen in vaccine development against ticks and TBDs. Proteins with differential representation in response to Sub KD provide insights into vaccine protective mechanisms and candidate tick protective antigens.


Asunto(s)
Infestaciones por Garrapatas , Enfermedades por Picaduras de Garrapatas , Garrapatas , Vacunas , Animales , Humanos , Garrapatas/microbiología , Mosquitos Vectores , Antígenos , Infestaciones por Garrapatas/prevención & control , Proteínas de Artrópodos/genética , Enfermedades por Picaduras de Garrapatas/prevención & control
6.
Infect Immun ; 81(7): 2415-25, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23630955

RESUMEN

Anaplasma phagocytophilum causes human granulocytic anaplasmosis. Infection with this zoonotic pathogen affects gene expression in both the vertebrate host and the tick vector, Ixodes scapularis. Here, we identified new genes, including spectrin alpha chain or alpha-fodrin (CG8) and voltage-dependent anion-selective channel or mitochondrial porin (T2), that are involved in A. phagocytophilum infection/multiplication and the tick cell response to infection. The pathogen downregulated the expression of CG8 in tick salivary glands and T2 in both the gut and salivary glands to inhibit apoptosis as a mechanism to subvert host cell defenses and increase infection. In the gut, the tick response to infection through CG8 upregulation was used by the pathogen to increase infection due to the cytoskeleton rearrangement that is required for pathogen infection. These results increase our understanding of the role of tick genes during A. phagocytophilum infection and multiplication and demonstrate that the pathogen uses similar strategies to establish infection in both vertebrate and invertebrate hosts.


Asunto(s)
Anaplasma phagocytophilum/patogenicidad , Apoptosis , Proteínas Portadoras/metabolismo , Citoesqueleto/metabolismo , Ixodes/microbiología , Proteínas de Microfilamentos/metabolismo , Anaplasma phagocytophilum/genética , Animales , Proteínas Portadoras/genética , Caspasa 9/genética , Caspasa 9/metabolismo , Línea Celular , Conducta Alimentaria , Femenino , Tracto Gastrointestinal/microbiología , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Interacciones Huésped-Patógeno , Ixodes/genética , Ixodes/metabolismo , Masculino , Proteínas de Microfilamentos/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Filogenia , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Glándulas Salivales/microbiología , Espectrina/genética , Espectrina/metabolismo , Canales Aniónicos Dependientes del Voltaje/genética , Canales Aniónicos Dependientes del Voltaje/metabolismo
8.
Exp Appl Acarol ; 59(3): 319-38, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22773071

RESUMEN

Gene silencing by RNA interference (RNAi) is an important research tool in many areas of biology. To effectively harness the power of this technique in order to explore tick functional genomics and tick-microorganism interactions, optimised parameters for RNAi-mediated gene silencing in tick cells need to be established. Ten cell lines from four economically important ixodid tick genera (Amblyomma, Hyalomma, Ixodes and Rhipicephalus including the sub-species Boophilus) were used to examine key parameters including small interfering RNA (siRNA), double stranded RNA (dsRNA), transfection reagent and incubation time for silencing virus reporter and endogenous tick genes. Transfection reagents were essential for the uptake of siRNA whereas long dsRNA alone was taken up by most tick cell lines. Significant virus reporter protein knockdown was achieved using either siRNA or dsRNA in all the cell lines tested. Optimum conditions varied according to the cell line. Consistency between replicates and duration of incubation with dsRNA were addressed for two Ixodes scapularis cell lines; IDE8 supported more consistent and effective silencing of the endogenous gene subolesin than ISE6, and highly significant knockdown of the endogenous gene 2I1F6 in IDE8 cells was achieved within 48 h incubation with dsRNA. In summary, this study shows that gene silencing by RNAi in tick cell lines is generally more efficient with dsRNA than with siRNA but results vary between cell lines and optimal parameters need to be determined for each experimental system.


Asunto(s)
Técnicas de Silenciamiento del Gen , Ixodidae , Interferencia de ARN , Animales , Línea Celular , Genes Reporteros , Luciferasas de Renilla/genética , ARN Bicatenario , ARN Interferente Pequeño , Virus de los Bosques Semliki/genética
9.
iScience ; 26(5): 106697, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37168564

RESUMEN

Tick microbiota can be targeted for the control of tick-borne diseases such as human granulocytic anaplasmosis (HGA) caused by model pathogen, Anaplasma phagocytophilum. Frankenbacteriosis is inspired by Frankenstein and defined here as paratransgenesis of tick symbiotic/commensal bacteria to mimic and compete with tick-borne pathogens. Interactions between A. phagocytophilum and symbiotic Sphingomonas identified by metaproteomics analysis in Ixodes scapularis midgut showed competition between both bacteria. Consequently, Sphingomonas was selected for frankenbacteriosis for the control of A. phagocytophilum infection and transmission. The results showed that Franken Sphingomonas producing A. phagocytophilum major surface protein 4 (MSP4) mimic pathogen and reduce infection in ticks by competition and interaction with cell receptor components of infection. Franken Sphingomonas-MSP4 transovarial and trans-stadial transmission suggests that tick larvae with genetically modified Franken Sphingomonas-MSP4 could be produced in the laboratory and released in the field to compete and replace the wildtype populations with associated reduction in pathogen infection/transmission and HGA disease risks.

10.
Vaccines (Basel) ; 10(12)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36560405

RESUMEN

Anaplasma phagocytophilum Major surface protein 4 (MSP4) plays a role during infection and multiplication in host neutrophils and tick vector cells. Recently, vaccination trials with the A. phagocytophilum antigen MSP4 in sheep showed only partial protection against pathogen infection. However, in rabbits immunized with MSP4, this recombinant antigen was protective. Differences between rabbit and sheep antibody responses are probably associated with the recognition of non-protective epitopes by IgG of immunized lambs. To address this question, we applied quantum vaccinomics to identify and characterize MSP4 protective epitopes by a microarray epitope mapping using sera from vaccinated rabbits and sheep. The identified candidate protective epitopes or immunological quantum were used for the design and production of a chimeric protective antigen. Inhibition assays of A. phagocytophilum infection in human HL60 and Ixodes scapularis tick ISE6 cells evidenced protection by IgG from sheep and rabbits immunized with the chimeric antigen. These results supported that the design of new chimeric candidate protective antigens using quantum vaccinomics to improve the protective capacity of antigens in multiple hosts.

11.
Sci Rep ; 12(1): 7484, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35524154

RESUMEN

The possibility of exploiting the human immune response to glycan α-Gal for the control of multiple infectious diseases has been the objective of recent investigations. In this field of research, the strain of Escherichia coli O86:B7 has been at the forefront, but this Gram-negative microorganism presents a safety concern and therefore cannot be considered as a probiotic. To address this challenge, this study explored the identification of novel lactic acid bacteria with a safe history of use, producing α-Gal and having probiotic potential. The lactic acid bacteria were isolated from different traditionally fermented foods (kununn-zaki, kindirmo, and pulque) and were screened for the production of α-Gal and some specific probiotic potential indicators. The results showed that Ten (10) out of forty (40) [25%] of the tested lactic acid bacteria (LAB) produced α-Gal and were identified as Limosilactobacillus fermentum, Levilactobacillus brevis, Agrilactobacillus composti, Lacticaseibacillus paracasei, Leuconostoc mesenteroides and Weissella confusa. Four (4) LAB strains with highest levels of α-Gal were further selected for in vivo study using a mouse model (α1,3GT KO mice) to elucidate the immunological response to α-Gal. The level of anti-α-Gal IgG observed were not significant while the level of anti-α-Gal IgM was lower in comparison to the level elicited by E. coli O86:B7. We concluded that the lactic acid bacteria in this study producing α-Gal have potential probiotic capacity and can be further explored in α-Gal-focused research for both the prevention and treatment of various infectious diseases and probiotic development.


Asunto(s)
Alimentos Fermentados , Lacticaseibacillus paracasei , Lactobacillales , Probióticos , Escherichia coli
12.
Biosci Rep ; 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34223621

RESUMEN

The Akirin family of transcription cofactors are involved throughout the metazoan in the regulation of different biological processes such as immunity, interdigital regression, muscle and neural development. Akirin do not have catalytic or DNA-binding capability and exert its regulatory function primarily through interacting proteins such as transcription factors, chromatin remodelers, and RNA-associated proteins. In this study, we focused on the human Akirin2 regulome and interactome in neutrophil-like model human Caucasian promyelocytic leukemia HL60 cells. Our hypothesis is that metazoan evolved to have Akirin2 functional complements and different Akirin2-mediated mechanisms for the regulation of gene expression. To address this hypothesis, experiments were conducted using transcriptomics, proteomics and systems biology approaches in akirin2 knockdown and wildtype HL60 cells to characterize Akirin2 gene/protein targets, functional complements and to provide evidence of different mechanisms that may be involved in Akirin2-mediated regulation of gene expression. The results revealed Akirin2 gene/protein targets in multiple biological processes with higher representation of immunity and identified immune response genes as candidate Akirin2 functional complements. In addition to linking chromatin remodelers with transcriptional activation, Akirin2 also interacts with histone H3.1 for regulation of gene expression.

13.
Probiotics Antimicrob Proteins ; 13(5): 1254-1266, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33791994

RESUMEN

Drug resistance has become a threat to global health, and new interventions are needed to control major infectious diseases. The composition of gut microbiota has been linked to human health and has been associated with severity of malaria. Fermented foods contribute to the community of healthy gut bacteria. Despite the studies connecting gut microbiota to the prevention of malaria transmission and severity, research on developing functional foods for the purpose of manipulating the gut microbiota for malaria control is limited. This review summarizes recent knowledge on the role of the gut microbiota in malaria prevention and treatment. This information should encourage the search for lactic acid bacteria expressing α-Gal and those that exhibit the desired immune stimulating properties for the development of functional food and probiotics for malaria control.


Asunto(s)
Alimentos Funcionales , Microbioma Gastrointestinal , Sistema Inmunológico , Malaria , Humanos , Lactobacillales , Malaria/inmunología , Malaria/prevención & control
14.
Biosci Rep ; 41(7)2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-34291801

RESUMEN

The Akirin family of transcription cofactors are involved throughout the metazoan in the regulation of different biological processes (BPs) such as immunity, interdigital regression, muscle and neural development. Akirin do not have catalytic or DNA-binding capability and exert its regulatory function primarily through interacting proteins such as transcription factors, chromatin remodelers, and RNA-associated proteins. In the present study, we focused on the human Akirin2 regulome and interactome in neutrophil-like model human Caucasian promyelocytic leukemia HL60 cells. Our hypothesis is that metazoan evolved to have Akirin2 functional complements and different Akirin2-mediated mechanisms for the regulation of gene expression. To address this hypothesis, experiments were conducted using transcriptomics, proteomics and systems biology approaches in akirin2 knockdown and wildtype (WT) HL60 cells to characterize Akirin2 gene/protein targets, functional complements and to provide evidence of different mechanisms that may be involved in Akirin2-mediated regulation of gene expression. The results revealed Akirin2 gene/protein targets in multiple BPs with higher representation of immunity and identified immune response genes as candidate Akirin2 functional complements. In addition to linking chromatin remodelers with transcriptional activation, Akirin2 also interacts with histone H3.1 for regulation of gene expression.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Redes Reguladoras de Genes , Neutrófilos/metabolismo , Factores de Transcripción/metabolismo , Transcriptoma , Proteínas de Unión al ADN/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Células HL-60 , Humanos , Neutrófilos/inmunología , Mapas de Interacción de Proteínas , Proteoma , Proteómica , RNA-Seq , Transducción de Señal , Factores de Transcripción/genética
15.
Pathogens ; 10(1)2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33466622

RESUMEN

Neuropeptides are small signaling molecules expressed in the tick central nervous system, i.e., the synganglion. The neuronal-like Ixodes scapularis embryonic cell line, ISE6, is an effective tool frequently used for examining tick-pathogen interactions. We detected 37 neuropeptide transcripts in the I. scapularis ISE6 cell line using in silico methods, and six of these neuropeptide genes were used for experimental validation. Among these six neuropeptide genes, the tachykinin-related peptide (TRP) of ISE6 cells varied in transcript expression depending on the infection strain of the tick-borne pathogen, Anaplasma phagocytophilum. The immunocytochemistry of TRP revealed cytoplasmic expression in a prominent ISE6 cell subpopulation. The presence of TRP was also confirmed in A. phagocytophilum-infected ISE6 cells. The in situ hybridization and immunohistochemistry of TRP of I. scapularis synganglion revealed expression in distinct neuronal cells. In addition, TRP immunoreaction was detected in axons exiting the synganglion via peripheral nerves as well as in hemal nerve-associated lateral segmental organs. The characterization of a complete Ixodes neuropeptidome in ISE6 cells may serve as an effective in vitro tool to study how tick-borne pathogens interact with synganglion components that are vital to tick physiology. Therefore, our current study is a potential stepping stone for in vivo experiments to further examine the neuronal basis of tick-pathogen interactions.

16.
Comput Struct Biotechnol J ; 18: 253-257, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33489003

RESUMEN

Ticks are arthropod ectoparasites and vectors of pathogens affecting human and animal health worldwide. The exoskeleton is a structure that protect arthropods from natural threats such as predators and diseases. Both structural proteins and chemical elements are components of the exoskeleton. However, the chemical composition and effect of pathogen infection on tick exoskeleton properties has not been characterized. In this study, we characterized the chemical composition of tick exoskeleton and the effect of Anaplasma pathogen infection on the chemical elements of the exoskeleton and selected structural proteins. The chemical composition was characterized ventral, dorsal upper and dorsal lower regions of tick exoskeleton by scanning electron microscopy and energy dispersive spectroscopy and compared between infected and uninfected ticks. The levels of selected structural proteins were analyzed in infected and uninfected I. scapularis salivary glands by immunofluorescence analysis. The results showed that tick exoskeleton contains chemical elements also found in other arthropods. Some of the identified elements such as Mg and Al may be involved in tick exoskeleton stabilization through biomineralization of structural proteins that may be overrepresented in response to pathogen infection. These results suggested that pathogen infection alters the chemical composition of tick exoskeleton by mechanisms still to be characterized and with tick species and exoskeleton region-specific differences.

17.
Vaccines (Basel) ; 8(2)2020 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-32344637

RESUMEN

The alpha-Gal syndrome (AGS) is associated with tick bites that can induce in humans high levels of IgE antibodies against the carbohydrate Galα1-3Galß1-(3)4GlcNAc-R (α-Gal) present in glycoproteins and glycolipids from tick saliva that mediate primarily delayed anaphylaxis to mammalian meat consumption. It has been proposed that humans evolved by losing the capacity to synthesize α-Gal to increase the protective immune response against pathogens with this modification on their surface. This evolutionary adaptation suggested the possibility of developing vaccines and other interventions to induce the anti-α-Gal IgM/IgG protective response against pathogen infection and multiplication. However, the protective effect of the anti-α-Gal immune response for the control of tuberculosis caused by Mycobacterium spp. has not been explored. To address the possibility of using vaccination with α-Gal for the control of tuberculosis, in this study, we used the zebrafish-Mycobacterium marinum model. The results showed that vaccination with α-Gal protected against mycobacteriosis in the zebrafish model of tuberculosis and provided evidence on the protective mechanisms in response to vaccination with α-Gal. These mechanisms included B-cell maturation, antibody-mediated opsonization of mycobacteria, Fc-receptor (FcR)-mediated phagocytosis, macrophage response, interference with the α-Gal antagonistic effect of the toll-like receptor 2 (TLR2)/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB)-mediated immune response, and upregulation of pro-inflammatory cytokines. These results provided additional evidence supporting the role of the α-Gal-induced immune response in the control of infections caused by pathogens with this modification on their surface and the possibility of using this approach for the control of multiple infectious diseases.

18.
Sci Rep ; 10(1): 13443, 2020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-32778731

RESUMEN

Tick cell lines are an easy-to-handle system for the study of viral and bacterial infections and other aspects of tick cellular processes. Tick cell cultures are often continuously cultivated, as freezing can affect their viability. However, the long-term cultivation of tick cells can influence their genome stability. In the present study, we investigated karyotype and genome size of tick cell lines. Though 16S rDNA sequencing showed the similarity between Ixodes spp. cell lines at different passages, their karyotypes differed from 2n = 28 chromosomes for parental Ixodes spp. ticks, and both increase and decrease in chromosome numbers were observed. For example, the highly passaged Ixodes scapularis cell line ISE18 and Ixodes ricinus cell lines IRE/CTVM19 and IRE/CTVM20 had modal chromosome numbers 48, 23 and 48, respectively. Also, the Ornithodoros moubata cell line OME/CTVM22 had the modal chromosome number 33 instead of 2n = 20 chromosomes for Ornithodoros spp. ticks. All studied tick cell lines had a larger genome size in comparison to the genomes of the parental ticks. Thus, highly passaged tick cell lines can be used for research purposes, but possible differences in encoded genetic information and downstream cellular processes, between different cell populations, should be taken into account.


Asunto(s)
Garrapatas/crecimiento & desarrollo , Garrapatas/genética , Animales , Técnicas de Cultivo de Célula/métodos , Línea Celular , Ixodidae/genética , Cariotipo , Ornithodoros/genética , ARN Ribosómico 16S/genética
19.
Artículo en Inglés | MEDLINE | ID: mdl-32211341

RESUMEN

Ticks are arthropod ectoparasite vectors of pathogens and the cause of allergic reactions affecting human health worldwide. In humans, tick bites can induce high levels of immunoglobulin E antibodies against the carbohydrate Galα1-3Galß1-(3)4GlcNAc-R (α-Gal) present in glycoproteins and glycolipids from tick saliva that mediate anaphylactic reactions known as the alpha-Gal syndrome (AGS) or red meat allergy. In this study, a new animal model was developed using zebrafish for the study of allergic reactions and the immune mechanisms in response to tick salivary biogenic substances and red meat consumption. The results showed allergic hemorrhagic anaphylactic-type reactions and abnormal behavior patterns likely in response to tick salivary toxic and anticoagulant biogenic compounds different from α-Gal. However, the results showed that only zebrafish previously exposed to tick saliva developed allergic reactions to red meat consumption with rapid desensitization and tolerance. These allergic reactions were associated with tissue-specific Toll-like receptor-mediated responses in types 1 and 2 T helper cells (TH1 and TH2) with a possible role for basophils in response to tick saliva. These results support previously proposed immune mechanisms triggering the AGS and provided evidence for new mechanisms also potentially involved in the AGS. These results support the use of the zebrafish animal model for the study of the AGS and other tick-borne allergies.


Asunto(s)
Hipersensibilidad a los Alimentos/inmunología , Hipersensibilidad/inmunología , Carne Roja , Rhipicephalus sanguineus/inmunología , Trisacáridos/inmunología , Anafilaxia/inmunología , Anafilaxia/fisiopatología , Animales , Anticuerpos/sangre , Conducta Animal , Dinoprostona , Modelos Animales de Enfermedad , Femenino , Hipersensibilidad/fisiopatología , Intestinos/inmunología , Riñón/inmunología , Masculino , Saliva/química , Saliva/inmunología , Células TH1/inmunología , Células Th2/inmunología , Pez Cebra
20.
Vaccines (Basel) ; 8(1)2020 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-32046307

RESUMEN

The main objective of this study was to propose a novel methodology to approach challenges in molecular biology. Akirin/Subolesin (AKR/SUB) are vaccine protective antigens and are a model for the study of the interactome due to its conserved function in the regulation of different biological processes such as immunity and development throughout the metazoan. Herein, three visual artists and a music professor collaborated with scientists for the functional characterization of the AKR2 interactome in the regulation of the NF-κB pathway in human placenta cells. The results served as a methodological proof-of-concept to advance this research area. The results showed new perspectives on unexplored characteristics of AKR2 with functional implications. These results included protein dimerization, the physical interactions with different proteins simultaneously to regulate various biological processes defined by cell type-specific AKR-protein interactions, and how these interactions positively or negatively regulate the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway in a biological context-dependent manner. These results suggested that AKR2-interacting proteins might constitute suitable secondary transcription factors for cell- and stimulus-specific regulation of NF-κB. Musical perspective supported AKR/SUB evolutionary conservation in different species and provided new mechanistic insights into the AKR2 interactome. The combined scientific and artistic perspectives resulted in a multidisciplinary approach, advancing our knowledge on AKR/SUB interactome, and provided new insights into the function of AKR2-protein interactions in the regulation of the NF-κB pathway. Additionally, herein we proposed an algorithm for quantum vaccinomics by focusing on the model proteins AKR/SUB.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA