Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Physiol ; 598(20): 4663-4680, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32749717

RESUMEN

KEY POINTS: The mechanisms involved in hypothermia and fever during systemic inflammation (SI) remain largely unknown. Our data support the contention that brain-mediated mechanisms are different in hypertension during SI. Considering that, clinically, it is not easy to assess all mechanisms involved in cardiovascular and thermoregulatory control during SI, the present study sheds light on these integrated mechanisms that may be triggered simultaneously in septic hypertensive patients. The result obtained demonstrate that, in lipopolysaccharide-induced SI, an increased hypothermia is observed in neurogenic hypertension, which is caused by reduced hypothalamic prostaglandin E2 production and increased heat loss in conscious rats. Therefore, the results of the present study provide useful insight for clinical trials evaluating the thermoregulatory outcomes of septic patients with hypertension. ABSTRACT: Hypertension is a prevalent disease characterized by autonomic-induced elevated and sustained blood pressure levels and abnormal body core temperature (Tb) regulation. The present study aimed to determine the brain-mediated mechanisms involved in the thermoregulatory changes observed during lipopolysaccharide (LPS)-induced systemic inflammation (SI; at a septic-like model) in spontaneously hypertensive rats (SHR). We combined Tb and skin temperature (Tsk) analysis, assessment of prostaglandin (PG) E2 levels (the proximal mediator of fever) in the anteroventral region of the hypothalamus (AVPO; an important site for Tb control), oxygen consumption analysis, cardiovascular recordings, assays of inflammatory markers, and evaluation of oxidative stress in the plasma and brain of male Wistar rats and SHR that had received LPS (1.5 mg kg-1 ) or saline. LPS induced hypothermia followed by fever in Wistar rats, whereas, in SHR, a maintained hypothermia without fever were observed. These thermoregulatory responses were associated with an increased heat loss in SHR compared to Wistar rats. We measured LPS-induced increased PGE2 levels in the AVPO in Wistar rats, but not in SHR. The LPS-induced drop in blood pressure was higher in SHR than in Wistar rats. Furthermore, LPS-induced plasma and brain [regions involved in autonomic control: nucleus tractus solitarius (NTS) and rostral ventrolateral medulla (RVLM)] cytokine surges were blunted, whereas oxidative stress was higher in SHR. LPS-induced SI leads to blunted cytokine surges both systemically (plasma) and centrally (NTS and RVLM) and reduced hypothalamic PGE2 production, which are all associated with increased hypothermia mediated by increased heat loss, but not by heat production, in SHR.


Asunto(s)
Hipertensión , Hipotermia Inducida , Animales , Regulación de la Temperatura Corporal , Dinoprostona , Humanos , Hipotálamo , Lipopolisacáridos/toxicidad , Masculino , Ratas , Ratas Wistar
2.
J Physiol ; 595(3): 677-693, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27647415

RESUMEN

KEY POINTS: Long-chain acyl-CoA synthetase 6 (ACSL6) mRNA is present in human and rat skeletal muscle, and is modulated by nutritional status: exercise and fasting decrease ACSL6 mRNA, whereas acute lipid ingestion increase its expression. ACSL6 genic inhibition in rat primary myotubes decreased lipid accumulation, as well as activated the higher mitochondrial oxidative capacity programme and fatty acid oxidation through the AMPK/PGC1-α pathway. ACSL6 overexpression in human primary myotubes increased phospholipid species and decreased oxidative metabolism. ABSTRACT: Long-chain acyl-CoA synthetases (ACSL 1 to 6) are key enzymes regulating the partitioning of acyl-CoA species toward different metabolic fates such as lipid synthesis or ß-oxidation. Despite our understanding of ecotopic lipid accumulation in skeletal muscle being associated with metabolic diseases such as obesity and type II diabetes, the role of specific ACSL isoforms in lipid synthesis remains unclear. In the present study, we describe for the first time the presence of ACSL6 mRNA in human skeletal muscle and the role that ACSL6 plays in lipid synthesis in both rodent and human skeletal muscle. ACSL6 mRNA was observed to be up-regulated by acute high-fat meal ingestion in both rodents and humans. In rats, we also demonstrated that fasting and chronic aerobic training negatively modulated the ACSL6 mRNA and other genes of lipid synthesis. Similar results were obtained following ACSL6 knockdown in rat myotubes, which was associated with a decreased accumulation of TAGs and lipid droplets. Under the same knockdown condition, we further demonstrate an increase in fatty acid content, p-AMPK, mitochondrial content, mitochondrial respiratory rates and palmitate oxidation. These results were associated with increased PGC-1α, UCP2 and UCP3 mRNA and decreased reactive oxygen species production. In human myotubes, ACSL6 overexpression reduced palmitate oxidation and PGC-1α mRNA. In conclusion, ACSL6 drives acyl-CoA toward lipid synthesis and its downregulation improves mitochondrial biogenesis, respiratory capacity and lipid oxidation. These outcomes are associated with the activation of the AMPK/PGC1-α pathway.


Asunto(s)
Coenzima A Ligasas/metabolismo , Metabolismo de los Lípidos/fisiología , Mitocondrias Musculares/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Animales , Células Cultivadas , Citrato (si)-Sintasa/metabolismo , Coenzima A Ligasas/genética , Dieta Alta en Grasa , Ácidos Grasos/metabolismo , Femenino , Humanos , Masculino , Obesidad/metabolismo , Oxidación-Reducción , Consumo de Oxígeno , ARN Mensajero/metabolismo , Ratas Wistar
3.
J Bioenerg Biomembr ; 49(5): 399-411, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28918598

RESUMEN

Intracellular long-chain acyl-CoA synthetases (ACSL) activate fatty acids to produce acyl-CoA, which undergoes ß-oxidation and participates in the synthesis of esterified lipids such as triacylglycerol (TAG). Imbalances in these metabolic routes are closely associated with the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Triacsin C is one of the few compounds that inhibit TAG accumulation into lipid droplets (LD) by suppressing ACSL activity. Here we report that treatment of primary rat hepatocytes with triacsin C at concentrations lower than the IC50 (4.1 µM) for LD formation: (i) diminished LD number in a concentration-dependent manner; (ii) increased mitochondrial amount; (iii) markedly improved mitochondrial metabolism by enhancing the ß-oxidation efficiency, electron transport chain capacity, and degree of coupling - treatment of isolated rat liver mitochondria with the same triacsin C concentrations did not affect the last two parameters; (iv) decreased the GSH/GSSG ratio and elevated the protein carbonyl level, which suggested an increased reactive oxygen species production, as observed in isolated mitochondria. The hepatocyte mitochondrial improvements were not related to either the transcriptional levels of PGC-1α or the content of mTOR and phosphorylated AMPK. Triacsin C at 10 µM induced hepatocyte death by necrosis and/or apoptosis through mechanisms associated with mitochondrial permeability transition pore opening, as demonstrated by experiments using isolated mitochondria. Therefore, triacsin C at sub-IC50 concentrations modulates the lipid imbalance by shifting hepatocytes to a more oxidative state and enhancing the fatty acid consumption, which can in turn accelerate lipid oxidation and reverse NAFLD in long-term therapies.


Asunto(s)
Hepatocitos/citología , Gotas Lipídicas/efectos de los fármacos , Triazenos/farmacología , Animales , Células Cultivadas , Relación Dosis-Respuesta a Droga , Metabolismo de los Lípidos/efectos de los fármacos , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Biogénesis de Organelos , Ratas , Triazenos/uso terapéutico
4.
J Exp Biol ; 220(Pt 21): 4035-4046, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28912256

RESUMEN

During adult life, honey bee workers undergo a succession of behavioral states. Nurse bees perform tasks inside the nest, and when they are about 2-3 weeks old they initiate foraging. This switch is associated with alterations in diet, and with the levels of juvenile hormone and vitellogenin circulating in hemolymph. It is not clear whether this behavioral maturation involves major changes at the cellular level, such as mitochondrial activity and the redox environment in the head, thorax and abdomen. Using high-resolution respirometry, biochemical assays and RT-qPCR, we evaluated the association of these parameters with this behavioral change. We found that tissues from the head and abdomen of nurses have a higher oxidative phosphorylation capacity than those of foragers, while for the thorax we found the opposite situation. As higher mitochondrial activity tends to generate more H2O2, and H2O2 is known to stabilize HIF-1α, this would be expected to stimulate hypoxia signaling. The positive correlation that we observed between mitochondrial activity and hif-1α gene expression in abdomen and head tissue of nurses would be in line with this hypothesis. Higher expression of antioxidant enzyme genes was observed in foragers, which could explain their low levels of protein carbonylation. No alterations were seen in nitric oxide (NO) levels, suggesting that NO signaling is unlikely to be involved in behavioral maturation. We conclude that the behavioral change seen in honey bee workers is reflected in differential mitochondrial activities and redox parameters, and we consider that this can provide insights into the underlying aging process.


Asunto(s)
Abejas/fisiología , Conducta Animal , Expresión Génica , Mitocondrias/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Factores de Edad , Anaerobiosis , Animales , Abejas/genética
5.
J Chem Inf Model ; 57(5): 1029-1044, 2017 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-28414908

RESUMEN

The study of selective toxicity of carbon nanotubes (CNTs) on mitochondria (CNT-mitotoxicity) is of major interest for future biomedical applications. In the current work, the mitochondrial oxygen consumption (E3) is measured under three experimental conditions by exposure to pristine and oxidized CNTs (hydroxylated and carboxylated). Respiratory functional assays showed that the information on the CNT Raman spectroscopy could be useful to predict structural parameters of mitotoxicity induced by CNTs. The in vitro functional assays show that the mitochondrial oxidative phosphorylation by ATP-synthase (or state V3 of respiration) was not perturbed in isolated rat-liver mitochondria. For the first time a star graph (SG) transform of the CNT Raman spectra is proposed in order to obtain the raw information for a nano-QSPR model. Box-Jenkins and perturbation theory operators are used for the SG Shannon entropies. A modified RRegrs methodology is employed to test four regression methods such as multiple linear regression (LM), partial least squares regression (PLS), neural networks regression (NN), and random forest (RF). RF provides the best models to predict the mitochondrial oxygen consumption in the presence of specific CNTs with R2 of 0.998-0.999 and RMSE of 0.0068-0.0133 (training and test subsets). This work is aimed at demonstrating that the SG transform of Raman spectra is useful to encode CNT information, similarly to the SG transform of the blood proteome spectra in cancer or electroencephalograms in epilepsy and also as a prospective chemoinformatics tool for nanorisk assessment. All data files and R object models are available at https://dx.doi.org/10.6084/m9.figshare.3472349 .


Asunto(s)
Mitocondrias/efectos de los fármacos , Modelos Biológicos , Nanotubos de Carbono/toxicidad , Espectrometría Raman , Animales , Entropía , Modelos Lineales , Masculino , Mitocondrias/ultraestructura , Consumo de Oxígeno , Ratas , Ratas Wistar
6.
Anal Biochem ; 515: 55-60, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27717856

RESUMEN

The research on mitochondrial functions in adipocytes has increasingly evidenced that mitochondria plays an important role in the onset and/or progression of obesity and related pathologies. Mitochondrial function in brown adipose tissue (BAT) has been classically assessed by measuring either the levels/activity of mitochondrial enzymes, or the respiration in isolated mitochondria. Isolation of mitochondria is not advantageous because it demands significant time and amount of tissue and, as tissue homogenates, disrupts biochemical and physical connections of mitochondria within the cell. Here, we described a new and efficient protocol to analyze the mitochondrial respiratory states in BAT biopsies that relies on intracellular triglyceride depletion followed by tissue permeabilization. In addition to minimizing tissue requirements to ∼17 mg wet weight, the proposed protocol enabled analysis of all mitochondrial respiratory states, including phosphorylation (OXPHOS), no-phosphorylation (LEAK), and uncoupled (ETS) states, as well as the use of substrates for complex I, complex II, and cytochrome c; together, these features demonstrated mitochondrial integrity and validated the preparation efficacy. Therefore, the protocol described here increases the possibilities of answering physiological questions related to small BAT regions of human and animal models, which shall help to unravel the mechanisms that regulate mitochondrial function in health and disease.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Mitocondrias/metabolismo , Fosforilación Oxidativa , Consumo de Oxígeno , Triglicéridos/metabolismo , Tejido Adiposo Pardo/química , Animales , Humanos , Masculino , Ratas , Ratas Wistar , Triglicéridos/química
7.
Biochim Biophys Acta ; 1832(10): 1591-604, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23643711

RESUMEN

The mitochondrial redox state plays a central role in the link between mitochondrial overloading and insulin resistance. However, the mechanism by which the ROS induce insulin resistance in skeletal muscle cells is not completely understood. We examined the association between mitochondrial function and H2O2 production in insulin resistant cells. Our hypothesis is that the low mitochondrial oxygen consumption leads to elevated ROS production by a mechanism associated with reduced PGC1α transcription and low content of phosphorylated CREB. The cells were transfected with either the encoded sequence for catalase overexpression or the specific siRNA for catalase inhibition. After transfection, myotubes were incubated with palmitic acid (500µM) and the insulin response, as well as mitochondrial function and fatty acid metabolism, was determined. The low mitochondrial oxygen consumption led to elevated ROS production by a mechanism associated with ß-oxidation of fatty acids. Rotenone was observed to reduce the ratio of ROS production. The elevated H2O2 production markedly decreased the PGC1α transcription, an effect that was accompanied by a reduced phosphorylation of Akt and CREB. The catalase transfection prevented the reduction in the phosphorylated level of Akt and upregulated the levels of phosphorylated CREB. The mitochondrial function was elevated and H2O2 production reduced, thus increasing the insulin sensitivity. The catalase overexpression improved mitochondrial respiration protecting the cells from fatty acid-induced, insulin resistance. This effect indicates that control of hydrogen peroxide production regulates the mitochondrial respiration preventing the insulin resistance in skeletal muscle cells by a mechanism associated with CREB phosphorylation and ß-oxidation of fatty acids.


Asunto(s)
Catalasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Resistencia a la Insulina , Mitocondrias Musculares/fisiología , Animales , Antioxidantes/metabolismo , Células Cultivadas , Masculino , Mitocondrias Musculares/enzimología , Músculo Esquelético/citología , Músculo Esquelético/enzimología , Músculo Esquelético/metabolismo , Consumo de Oxígeno , Ácido Palmítico/farmacología , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Wistar
8.
J Pineal Res ; 57(2): 155-67, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24981026

RESUMEN

Melatonin has a number of beneficial metabolic actions and reduced levels of melatonin may contribute to type 2 diabetes. The present study investigated the metabolic pathways involved in the effects of melatonin on mitochondrial function and insulin resistance in rat skeletal muscle. The effect of melatonin was tested both in vitro in isolated rats skeletal muscle cells and in vivo using pinealectomized rats (PNX). Insulin resistance was induced in vitro by treating primary rat skeletal muscle cells with palmitic acid for 24 hr. Insulin-stimulated glucose uptake was reduced by palmitic acid followed by decreased phosphorylation of AKT which was prevented my melatonin. Palmitic acid reduced mitochondrial respiration, genes involved in mitochondrial biogenesis and the levels of tricarboxylic acid cycle intermediates whereas melatonin counteracted all these parameters in insulin-resistant cells. Melatonin treatment increases CAMKII and p-CREB but had no effect on p-AMPK. Silencing of CREB protein by siRNA reduced mitochondrial respiration mimicking the effect of palmitic acid and prevented melatonin-induced increase in p-AKT in palmitic acid-treated cells. PNX rats exhibited mild glucose intolerance, decreased energy expenditure and decreased p-AKT, mitochondrial respiration, and p-CREB and PGC-1 alpha levels in skeletal muscle which were restored by melatonin treatment in PNX rats. In summary, we showed that melatonin could prevent mitochondrial dysfunction and insulin resistance via activation of CREB-PGC-1 alpha pathway. Thus, the present work shows that melatonin play an important role in skeletal muscle mitochondrial function which could explain some of the beneficial effects of melatonin in insulin resistance states.


Asunto(s)
Resistencia a la Insulina/fisiología , Melatonina/farmacología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Animales , Células Cultivadas , Ciclo del Ácido Cítrico/efectos de los fármacos , Prueba de Tolerancia a la Glucosa , Masculino , Consumo de Oxígeno/efectos de los fármacos , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos
9.
Lipids Health Dis ; 12: 87, 2013 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-23764148

RESUMEN

BACKGROUND: We have previously demonstrated that increased rates of superoxide generation by extra-mitochondrial enzymes induce the activation of the mitochondrial ATP-sensitive potassium channel (mitoK(ATP)) in the livers of hypertriglyceridemic (HTG) mice. The resulting mild uncoupling mediated by mitoK(ATP) protects mitochondria against oxidative damage. In this study, we investigate whether immune cells from HTG mice also present increased mitoK(ATP) activity and evaluate the influence of this trait on cell redox state and viability. METHODS: Oxygen consumption (Clark-type electrode), reactive oxygen species production (dihydroethidium and H2-DCF-DA probes) and cell death (annexin V, cytocrome c release and Trypan blue exclusion) were determined in spleen mononuclear cells. RESULTS: HTG mice mononuclear cells displayed increased mitoK(ATP) activity, as evidenced by higher resting respiration rates that were sensitive to mitoK(ATP) antagonists. Whole cell superoxide production and apoptosis rates were increased in HTG cells. Inhibition of mitoK(ATP) further increased the production of reactive oxygen species and apoptosis in these cells. Incubation with HTG serum induced apoptosis more strongly in WT cells than in HTG mononuclear cells. Cytochrome c release into the cytosol and caspase 8 activity were both increased in HTG cells, indicating that cell death signaling starts upstream of the mitochondria but does involve this organelle. Accordingly, a reduced number of blood circulating lymphocytes was found in HTG mice. CONCLUSIONS: These results demonstrate that spleen mononuclear cells from hyperlipidemic mice have more active mitoK(ATP) channels, which downregulate mitochondrial superoxide generation. The increased apoptosis rate observed in these cells is exacerbated by closing the mitoK(ATP) channels. Thus, mitoK(ATP) opening acts as a protective mechanism that reduces cell death induced by hyperlipidemia.


Asunto(s)
Hiperlipidemias/metabolismo , Mitocondrias/metabolismo , Canales de Potasio/metabolismo , Superóxidos/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Apoptosis/genética , Hiperlipidemias/genética , Hiperlipidemias/patología , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/patología , Ratones , Mitocondrias/patología , Estrés Oxidativo , Consumo de Oxígeno , Especies Reactivas de Oxígeno/metabolismo , Bazo/citología
10.
Br J Pharmacol ; 180(13): 1766-1789, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36710256

RESUMEN

BACKGROUND AND PURPOSE: Cannabis legalization has risen in many countries, and its use during pregnancy has increased. The endocannabinoid system is present in the CNS at early stages of embryonic development, and regulates functional brain maturation including areas responsible for respiratory control, data on the influence of external cannabinoids on the development of the respiratory system and possible consequences during postnatal life are limited. EXPERIMENTAL APPROACH: We evaluated the effects of prenatal exposure to synthetic cannabinoid (WIN 55,212-2 [WIN], 0.5 mg·kg-1 ·day-1 ) on the respiratory control system in neonatal (P0, P6-7 and P12-13) and juvenile (P27-28) male and female rats. KEY RESULTS: WIN administration to pregnant rats interfered sex-specifically with breathing regulation of offspring, promoting a greater sensitivity to CO2 at all ages in males (except P6-7) and in juvenile females. An altered hypoxic chemoreflex was observed in P0 (hyperventilation) and P6-7 (hypoventilation) males, which was absent in females. Along with breathing alterations, brainstem analysis showed an increase in the number of catecholaminergic neurons and cannabinoid receptor type 1 (CB1 ) and changes in tissue respiration in the early males. A reduction in pulmonary compliance was observed in juvenile male rats. Preexposure to WIN enhanced spontaneous apnoea and reduced the number of serotoninergic (5-HT) neurons in the raphe magnus nucleus of P0 females. CONCLUSIONS AND IMPLICATIONS: These data demonstrate that excess stimulation of the endocannabinoid system during gestation has prolonged and sex-specific consequences for the respiratory control system.


Asunto(s)
Cannabinoides , Efectos Tardíos de la Exposición Prenatal , Embarazo , Humanos , Ratas , Animales , Masculino , Femenino , Agonistas de Receptores de Cannabinoides/farmacología , Endocannabinoides , Benzoxazinas/farmacología , Factores de Edad , Receptor Cannabinoide CB1 , Receptor Cannabinoide CB2
11.
Life Sci ; 312: 121175, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36414092

RESUMEN

Aging can modify the morphology and function of the liver, such as generating a decrease in the mitochondria content, autophagy, and cell senescence. Although exercise training has several beneficial effects on hepatic metabolism, its actions on autophagy processes, mitochondrial function, and cellular senescence need to be more widely explored. The present study verified the effects of aging and exercise on hepatic circadian markers, autophagy, and mitochondria activity in 24-month-old mice with a combined exercise training protocol. In addition, we used public datasets from human livers in several conditions and BMAL1 knockout mice. C57BL/6 mice were distributed into Control (CT, young, 6-month-old mice), sedentary old (Old Sed, sedentary, 24-month-old mice), and exercised old (Old Ex, 24-month-old mice submitted to a combined exercise training protocol). The exercise training protocol consisted of three days of endurance exercise - treadmill running, and two days of resistance exercise - climbing a ladder, for three weeks. At the end of the protocol, the liver was removed and prepared for histological analysis, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), immunoblotting technique, and oxygen consumption. Heatmaps were built using a human dataset and Bmal1 knockout samples. In summary, the Old Sed had reduced strength, coordination, and balance, as well as a decrease in Bmal1 expression and the presence of degenerated liver cells. Still, this group upregulated the transcription factors related to mitochondrial biogenesis. The Old Ex group had increased strength, coordination, and balance, improved glucose sensitivity, as well as restored Bmal1 expression and the mitochondrial transcription factors. The human datasets indicated that mitochondrial markers and autophagy strongly correlate with specific liver diseases but not aging. We can speculate that mitochondrial and autophagy molecular markers alterations may depend on long-term training.


Asunto(s)
Factores de Transcripción ARNTL , Hígado , Condicionamiento Físico Animal , Animales , Ratones , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Hígado/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo
12.
Anal Chem ; 84(15): 6341-5, 2012 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-22741519

RESUMEN

The ability of nanoassisted laser desorption-ionization mass spectrometry (NALDI-MS) imaging to provide selective chemical monitoring with proper spatial distribution of lipid profiles from tumor tissues after plate imprinting has been tested. NALDI-MS imaging identified and mapped several potential lipid biomarkers in a murine model of melanoma tumor (inoculation of B16/F10 cells). It also confirmed that the in vivo treatment of tumor bearing mice with synthetic supplement containing phosphoethanolamine (PHO-S) promoted an accentuated decrease in relative abundance of the tumor biomarkers. NALDI-MS imaging is a matrix-free LDI protocol based on the selective imprinting of lipids in the NALDI plate followed by the removal of the tissue. It therefore provides good quality and selective chemical images with preservation of spatial distribution and less interference from tissue material. The test case described herein illustrates the potential of chemically selective NALDI-MS imaging for biomarker discovery.


Asunto(s)
Rayos Láser , Melanoma Experimental/patología , Nanotecnología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Animales , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Etanolaminas/uso terapéutico , Humanos , Procesamiento de Imagen Asistido por Computador , Melanoma Experimental/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Programas Informáticos , Trasplante Homólogo
13.
J Bioenerg Biomembr ; 44(5): 587-96, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22864539

RESUMEN

Daily intake of conjugated linoleic acid (CLA) has been shown to reduce body fat accumulation and to increase body metabolism; this latter effect has been often associated with the up-regulation of uncoupling proteins (UCPs). Here we addressed the effects of a CLA-supplemented murine diet (~2 % CLA mixture, cis-9, trans-10 and trans-10, cis-12 isomers; 45 % of each isomer on alternating days) on mitochondrial energetics, UCP2 expression/activity in the liver and other associated morphological and functional parameters, in C57BL/6 mice. Diet supplementation with CLA reduced both lipid accumulation in adipose tissues and triacylglycerol plasma levels, but did not augment hepatic lipid storage. Livers of mice fed a diet supplemented with CLA showed high UCP2 mRNA levels and the isolated hepatic mitochondria showed indications of UCP activity: in the presence of guanosine diphosphate, the higher stimulation of respiration promoted by linoleic acid in mitochondria from the CLA mice was almost completely reduced to the level of the stimulation from the control mice. Despite the increased generation of reactive oxygen species through oxi-reduction reactions involving NAD(+)/NADH in the Krebs cycle, no oxidative stress was observed in the liver. In addition, in the absence of free fatty acids, basal respiration rates and the phosphorylating efficiency of mitochondria were preserved. These results indicate a beneficial and secure dose of CLA for diet supplementation in mice, which induces UCP2 overexpression and UCP activity in mitochondria while preserving the lipid composition and redox state of the liver.


Asunto(s)
Suplementos Dietéticos , Endopeptidasas/biosíntesis , Regulación de la Expresión Génica/efectos de los fármacos , Ácidos Linoleicos Conjugados/farmacología , Hígado/metabolismo , Mitocondrias Hepáticas/metabolismo , Animales , Masculino , Ratones , NAD/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteasas Ubiquitina-Específicas
14.
Nitric Oxide ; 26(3): 174-81, 2012 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-22349020

RESUMEN

Nitrosyl ruthenium complexes are promising NO donor agents with numerous advantages for the biologic applications of NO. We have characterized the NO release from the nitrosyl ruthenium complex [Ru(NO(2))(bpy)(2)(4-pic)](+) (I) and the reactive oxygen/nitrogen species (ROS/RNS)-mediated NO actions on isolated rat liver mitochondria. The results indicated that oxidation of mitochondrial NADH promotes NO release from (I) in a manner mediated by NO(2) formation (at neutral pH) as in mammalian cells, followed by an oxygen atom transfer mechanism (OAT). The NO released from (I) uncoupled mitochondria at low concentrations/incubation times and inhibited the respiratory chain at high concentrations/incubation times. In the presence of ROS generated by mitochondria NO gave rise to peroxynitrite, which, in turn, inhibited the respiratory chain and oxidized membrane protein-thiols to elicit a Ca(2+)-independent mitochondrial permeability transition; this process was only partially inhibited by cyclosporine-A, almost fully inhibited by the thiol reagent N-ethylmaleimide (NEM) and fully inhibited by the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO). These actions correlated with the release of cytochrome c from isolated mitochondria as detected by Western blotting analysis. These events, typically involved in cell necrosis and/or apoptosis denote a potential specific action of (I) and analogs against tumor cells via mitochondria-mediated processes.


Asunto(s)
Complejos de Coordinación/farmacocinética , Mitocondrias Hepáticas/metabolismo , NADP/metabolismo , Donantes de Óxido Nítrico/farmacocinética , Óxido Nítrico/farmacocinética , Rutenio/farmacocinética , Análisis de Varianza , Animales , Complejos de Coordinación/química , Complejos de Coordinación/metabolismo , Citocromos c/metabolismo , Concentración de Iones de Hidrógeno , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Óxido Nítrico/metabolismo , Donantes de Óxido Nítrico/metabolismo , Oxidación-Reducción , Ratas , Ratas Wistar , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Rutenio/química , Rutenio/metabolismo , Compuestos de Sulfhidrilo
15.
Antioxid Redox Signal ; 36(13-15): 953-968, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34409856

RESUMEN

Significance: Altered plasma triglyceride metabolism and changes in dietary fatty acid types and levels are major contributors to the development of metabolic and cardiovascular diseases such as fatty liver disease, obesity, diabetes, and atherosclerosis. Lipid accumulation in visceral adipose tissue and ectopically in other organs, as well as lipid-induced redox imbalance, is connected to mitochondrial dysfunction in a range of oxidative stress-associated metabolic and degenerative disorders. Recent Advances: Successful mitochondrial adaptive responses in the context of hypertriglyceridemia and dietary bioactive polyunsaturated fatty acids contribute to increase body energy expenditure and reduce oxidative stress, thus allowing several cell types to cope with metabolic challenges and stresses. These responses include mitochondrial redox signaling, mild uncoupling, and changes in network dynamic behavior. Critical Issues: Mitochondrial bioenergetics and redox changes in a lipid overload context are relatively well characterized. However, the turning point between adaptive and maladaptive mitochondrial responses remains a critical issue to be elucidated. In addition, the relationship between changes in fusion/fission machinery and mitochondrial function is less well understood. Future Directions: The effective mitochondrial responses described here support the research for new drug design and diet or nutraceutical formulations targeting mitochondrial mild uncoupling and effective quality control as putative strategies for cardiometabolic diseases. Antioxid. Redox Signal. 36, 953-968.


Asunto(s)
Hipertrigliceridemia , Mitocondrias , Respiración de la Célula , Metabolismo Energético , Humanos , Hipertrigliceridemia/metabolismo , Lípidos/farmacología , Mitocondrias/metabolismo
16.
Front Immunol ; 13: 953272, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36311768

RESUMEN

Interleukin 6 (IL-6) acts as a pro and anti-inflammatory cytokine, has an intense correlation with exercise intensity, and activates various pathways such as autophagy and mitochondrial unfolded protein response. Also, IL-6 is interconnected to circadian clock-related inflammation and can be suppressed by the nuclear receptor subfamily 1, group D, member 1 (Nr1d1, protein product REV-ERBα). Since IL-6 is linked to physical exercise-modulated metabolic pathways such as autophagy and mitochondrial metabolism, we investigated the relationship of IL-6 with REV-ERBα in the adaptations of these molecular pathways in response to acute intense physical exercise in skeletal muscle. The present study was divided into three experiments. In the first one, wild-type (WT) and IL-6 knockout (IL-6 KO) mice were divided into three groups: Basal time (Basal; sacrificed before the acute exercise), 1 hour (1hr post-Ex; sacrificed 1 hour after the acute exercise), and 3 hours (3hr post-Ex; sacrificed 3 hours after the acute exercise). In the second experiment, C2C12 cells received IL-6 physiological concentrations or REV-ERBα agonist, SR9009. In the last experiment, WT mice received SR9009 injections. After the protocols, the gastrocnemius muscle or the cells were collected for reverse transcription-quantitative polymerase chain reaction (RTq-PCR) and immunoblotting techniques. In summary, the downregulation of REV-ERBα, autophagic flux, and most mitochondrial genes was verified in the IL-6 KO mice independent of exercise. The WT and IL-6 KO treated with SR9009 showed an upregulation of autophagic genes. C2C12 cells receiving IL-6 did not modulate the Nr1d1 mRNA levels but upregulated the expression of some mitochondrial genes. However, when treated with SR9009, IL-6 and mitochondrial gene expression were upregulated in C2C12 cells. The autophagic flux in C2C12 suggest the participation of REV-ERBα protein in the IL-6-induced autophagy. In conclusion, the present study verified that the adaptations required through physical exercise (increases in mitochondrial content and improvement of autophagy machinery) might be intermediated by an interaction between IL-6 and REVERBα.


Asunto(s)
Interleucina-6 , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares , Animales , Ratones , Autofagia/genética , Biomarcadores , Productos del Gen rev , Interleucina-6/genética , Interleucina-6/metabolismo , Músculo Esquelético/metabolismo , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo
17.
Biochim Biophys Acta ; 1797(6-7): 1210-6, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20138021

RESUMEN

Mitochondria generated nitric oxide (NO) regulates several cell functions including energy metabolism, cell cycling, and cell death. Here we report that the NO synthase inhibitors (L-NAME, L-NNA and L-NMMA) administered either in vitro or in vivo induce Ca2+-dependent mitochondrial permeability transition (MPT) in rat liver mitochondria via a mechanism independent on changes in the energy state of the organelle. MPT was determined by the occurrence of cyclosporin A sensitive mitochondrial membrane potential disruption followed by mitochondrial swelling and Ca2+ release. In in vitro experiments, the effect of NOS inhibitors was dose-dependent (1 to 50 microM). In addition to cyclosporin A, L-NAME-induced MPT was sensitive to Mg2+ plus ATP, EGTA, and to a lower degree, to catalase and dithiothreitol. In contrast to L-NAME, its isomer D-NAME did not induce MPT. L-NAME-induced MPT was associated with a significant decrease in both the rate of NO generation and the content of mitochondrial S-nitrosothiol. Acute and chronic in vivo treatment with L-NAME also promoted MPT and decreased the content of mitochondrial S-nitrosothiol. SNAP (a NO donor) prevented L-NAME mediated MPT and reversed the decrease in the rate of NO generation and in the content of S-nitrosothiol. We propose that S-nitrosylation of critical membrane protein thiols by NO protects against MPT.


Asunto(s)
Mitocondrias Hepáticas/metabolismo , Óxido Nítrico/metabolismo , S-Nitrosotioles/metabolismo , Animales , Inhibidores Enzimáticos/farmacología , Femenino , Técnicas In Vitro , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias Hepáticas/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Dilatación Mitocondrial/efectos de los fármacos , NG-Nitroarginina Metil Éster/farmacología , Donantes de Óxido Nítrico/farmacología , Óxido Nítrico Sintasa/antagonistas & inhibidores , Ratas , Ratas Wistar , S-Nitroso-N-Acetilpenicilamina/farmacología
18.
Lab Invest ; 91(2): 232-40, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20805790

RESUMEN

Fatty acid synthase (FASN) is the metabolic enzyme responsible for the endogenous synthesis of the saturated long-chain fatty acid, palmitate. In contrast to most normal cells, FASN is overexpressed in a variety of human cancers, including cutaneous melanoma, in which its levels of expression are associated with tumor invasion and poor prognosis. We have previously shown that FASN inhibition with orlistat significantly reduces the number of spontaneous mediastinal lymph node metastases following the implantation of B16-F10 mouse melanoma cells in the peritoneal cavity of C57BL/6 mice. In this study, we investigate the biological mechanisms responsible for the FASN inhibition-induced apoptosis in B16-F10 cells. Both FASN inhibitors, cerulenin and orlistat, significantly reduced melanoma cell proliferation and activated the intrinsic pathway of apoptosis, as demonstrated by the cytochrome c release and caspase-9 and -3 activation. Further, apoptosis was preceded by an increase in both reactive oxygen species production and cytosolic calcium concentrations and independent of p53 activation and mitochondrial permeability transition. Taken together, these findings demonstrate the mitochondrial involvement in FASN inhibition-induced apoptosis in melanoma cells.


Asunto(s)
Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Cerulenina/farmacología , Ácido Graso Sintasas/antagonistas & inhibidores , Inhibidores de la Síntesis de Ácidos Grasos/farmacología , Lactonas/farmacología , Melanoma/enzimología , Análisis de Varianza , Animales , Apoptosis/fisiología , Calcio/metabolismo , Caspasas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Citocromos c/metabolismo , Cartilla de ADN/genética , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Lípidos/biosíntesis , Melanoma/fisiopatología , Ratones , Orlistat , Interferencia de ARN , Especies Reactivas de Oxígeno/metabolismo
19.
J Bioenerg Biomembr ; 43(1): 19-23, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21258853

RESUMEN

In this work we review recent findings that explain how mitochondrial bioenergetic functions and redox state respond to a hyperlipidemic in vivo environment and may contribute to the maintenance of a normal metabolic phenotype. The experimental model utilized to evidence these adaptive mechanisms is especially useful for these studies since it exhibits genetic hypertriglyceridemia and avoids complications introduced by high fat diets. Liver from hypertrigliceridemic (HTG) mice have a greater content of glycerolipids together with increased mitochondrial free fatty acid oxidation. HTG liver mitochondria have a higher resting respiration rate but normal oxidative phosphorylation efficiency. This is achieved by higher activity of the mitochondrial potassium channel sensitive to ATP (mitoK(ATP)). The mild uncoupling mediated by mitoK(ATP) accelerates respiration rates and reduces reactive oxygen species generation. Although this response is not sufficient to inhibit lipid induced extra-mitochondrial oxidative stress in whole liver cells it avoids amplification of this redox imbalance. Furthermore, higher mitoK(ATP) activity increases liver, brain and whole body metabolic rates. These mitochondrial adaptations may explain why these HTG mice do not develop insulin resistance and obesity even under a severe hyperlipidemic state. On the contrary, when long term high fat diets are employed, insulin resistance, fatty liver and obesity develop and mitochondrial adaptations are inefficient to counteract energy and redox imbalances.


Asunto(s)
Adaptación Fisiológica/fisiología , Metabolismo Energético/fisiología , Hipertrigliceridemia/metabolismo , Hígado/metabolismo , Mitocondrias/metabolismo , Animales , Respiración de la Célula/fisiología , Canales KATP/metabolismo , Ratones , Oxidación-Reducción
20.
Toxicol Appl Pharmacol ; 253(3): 282-9, 2011 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-21549140

RESUMEN

Guttiferone-A (GA) is a natural occurring polyisoprenylated benzophenone with cytotoxic action in vitro and anti-tumor action in rodent models. We addressed a potential involvement of mitochondria in GA toxicity (1-25 µM) toward cancer cells by employing both hepatic carcinoma (HepG2) cells and succinate-energized mitochondria, isolated from rat liver. In HepG2 cells GA decreased viability, dissipated mitochondrial membrane potential, depleted ATP and increased reactive oxygen species (ROS) levels. In isolated rat-liver mitochondria GA promoted membrane fluidity increase, cyclosporine A/EGTA-insensitive membrane permeabilization, uncoupling (membrane potential dissipation/state 4 respiration rate increase), Ca²âº efflux, ATP depletion, NAD(P)H depletion/oxidation and ROS levels increase. All effects in cells, except mitochondrial membrane potential dissipation, as well as NADPH depletion/oxidation and permeabilization in isolated mitochondria, were partly prevented by the a NAD(P)H regenerating substrate isocitrate. The results suggest the following sequence of events: 1) GA interaction with mitochondrial membrane promoting its permeabilization; 2) mitochondrial membrane potential dissipation; 3) NAD(P)H oxidation/depletion due to inability of membrane potential-sensitive NADP+ transhydrogenase of sustaining its reduced state; 4) ROS accumulation inside mitochondria and cells; 5) additional mitochondrial membrane permeabilization due to ROS; and 6) ATP depletion. These GA actions are potentially implicated in the well-documented anti-cancer property of GA/structure related compounds.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Benzofenonas/farmacología , Membranas Mitocondriales/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Adenosina Trifosfato/análisis , Animales , Benzofenonas/farmacocinética , Calcio/metabolismo , Supervivencia Celular/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Células Hep G2 , Humanos , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Membranas Mitocondriales/metabolismo , Dilatación Mitocondrial/efectos de los fármacos , NAD/análisis , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA