Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Cephalalgia ; 37(14): 1350-1372, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27852962

RESUMEN

Objective The interplay between neuronal innervation and other cell types underlies the physiological functions of the dura mater and contributes to pathophysiological conditions such as migraine. We characterized the extensive, but understudied, non-arterial diffuse dural innervation (DDI) of the rat and Rhesus monkey. Methods We used a comprehensive integrated multi-molecular immunofluorescence labeling strategy to extensively profile the rat DDI and to a lesser extent that of the Rhesus monkey. Results The DDI was distributed across a dense, pervasive capillary network and included free nerve endings of peptidergic CGRP-expressing C fibers that were closely intertwined with noradrenergic (NA) sympathetic fibers and thin-caliber nonpeptidergic "C/Aδ" fibers. These newly identified C/Aδ fibers were unmyelinated, like C fibers, but expressed NF200, usually indicative of Aδ fibers, and uniquely co-labeled for the CGRP co-receptor, RAMP1. Slightly-larger caliber NF200-positive fibers co-labeled for myelin basic protein (MBP) and terminated as unbranched corpuscular endings. The DDI peptidergic fibers co-labeled for the lectin IB4 and expressed presumably excitatory α1-adrenergic receptors, as well as inhibitory 5HT1D receptors and the delta opioid receptor (δOR), but rarely the mu opioid receptor (µOR). Labeling for P2X3, TRPV1, TRPA1, and parasympathetic markers was not observed in the DDI. Interpretation These results suggest potential functional interactions, wherein peptidergic DDI fibers may be activated by stress-related sympathetic activity, resulting in CGRP release that could be detected in the circulation. CGRP may also activate nonpeptidergic C/Aδ fibers that are likely mechanosensitive or polymodal, leading to activation of post-synaptic pain transmission circuits. The distribution of α1-adrenergic receptors, RAMP1, and the unique expression of the δOR on CGRP-expressing DDI fibers suggest strategies for functional modulation and application to therapy.


Asunto(s)
Duramadre/metabolismo , Duramadre/patología , Trastornos Migrañosos/metabolismo , Trastornos Migrañosos/patología , Fibras Nerviosas Amielínicas/metabolismo , Fibras Nerviosas Amielínicas/patología , Animales , Péptido Relacionado con Gen de Calcitonina/análisis , Péptido Relacionado con Gen de Calcitonina/metabolismo , Capilares/química , Capilares/metabolismo , Capilares/patología , Duramadre/química , Macaca mulatta , Masculino , Trastornos Migrañosos/terapia , Fibras Nerviosas Amielínicas/química , Ratas , Ratas Sprague-Dawley , Proteína 1 Modificadora de la Actividad de Receptores/análisis , Proteína 1 Modificadora de la Actividad de Receptores/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Receptores de Péptido Relacionado con el Gen de Calcitonina/análisis , Receptores de Péptido Relacionado con el Gen de Calcitonina/metabolismo , Especificidad de la Especie , Canales Catiónicos TRPV/análisis , Canales Catiónicos TRPV/metabolismo , Resultado del Tratamiento
2.
Mol Pain ; 11: 26, 2015 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-25957174

RESUMEN

BACKGROUND: The skin is a morphologically complex organ that serves multiple complementary functions, including an important role in thermoregulation, which is mediated by a rich vasculature that is innervated by sympathetic and sensory endings. Two autosomal dominant disorders characterized by episodes of severe pain, inherited erythromelalgia (IEM) and paroxysmal extreme pain disorder (PEPD) have been directly linked to mutations that enhance the function of sodium channel Nav1.7. Pain attacks are accompanied by reddening of the skin in both disorders. Nav1.7 is known to be expressed at relatively high levels within both dorsal root ganglion (DRG) and sympathetic ganglion neurons, and mutations that enhance the activity of Nav1.7 have been shown to have profound effects on the excitability of both cell-types, suggesting that dysfunction of sympathetic and/or sensory fibers, which release vasoactive peptides at skin vasculature, may contribute to skin reddening in IEM and PEPD. RESULTS: In the present study, we demonstrate that smooth muscle cells of cutaneous arterioles and arteriole-venule shunts (AVS) in the skin express sodium channel Nav1.7. Moreover, Nav1.7 is expressed by endothelial cells lining the arterioles and AVS and by sensory and sympathetic fibers innervating these vascular elements. CONCLUSIONS: These observations suggest that the activity of mutant Nav1.7 channels in smooth muscle cells of skin vasculature and innervating sensory and sympathetic fibers contribute to the skin reddening and/or pain in IEM and PEPD.


Asunto(s)
Axones/metabolismo , Endotelio/metabolismo , Células Musculares/metabolismo , Canal de Sodio Activado por Voltaje NAV1.7/genética , Piel/inervación , Piel/metabolismo , Eritromelalgia/genética , Ganglios Espinales/metabolismo , Humanos , Mutación/genética
3.
Pain Rep ; 9(2): e1119, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38375092

RESUMEN

Introduction: Numerous potential cutaneous targets exist for treating chronic pain with topically applied active pharmaceutical ingredients. This preliminary human skin tissue investigation was undertaken to characterize several key biomarkers in keratinocytes and provide proof-of-principle data to support clinical development of topical compounded formulations for peripheral neuropathic pain syndromes, such as postherpetic neuralgia (PHN). Objectives: The study intended to identify objective biomarkers in PHN skin on a patient-by-patient personalized medicine platform. The totality of biopsy biomarker data can provide a tissue basis for directing individualized compounded topical preparations to optimize treatment efficacy. Methods: Referencing 5 of the most common actives used in topical pain relief formulations (ketamine, gabapentin, clonidine, baclofen, and lidocaine), and 3 well-established cutaneous mediators (ie, neuropeptides, cannabinoids, and vanilloids), comprehensive immunolabeling was used to quantify receptor biomarkers in skin biopsy samples taken from ipsilateral (pain) and contralateral (nonpain) dermatomes of patients with PHN. Results: Epidermal keratinocyte labeling patterns were significantly different among the cohort for each biomarker, consistent with potential mechanisms of action among keratinocytes. Importantly, the total biomarker panel indicates that the enriched PHN cohort contains distinct subgroups. Conclusion: The heterogeneity of the cohort differences may explain studies that have not shown statistical group benefit from topically administered compounded therapies. Rather, the essential need for individual tissue biomarker evaluations is evident, particularly as a means to direct a more accurately targeted topical personalized medicine approach and generate positive clinical results.

4.
Pain Med ; 14(6): 895-915, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23691965

RESUMEN

OBJECTIVE: To determine if peripheral neuropathology exists among the innervation of cutaneous arterioles and arteriole-venule shunts (AVS) in fibromyalgia (FM) patients. SETTING: Cutaneous arterioles and AVS receive a convergence of vasoconstrictive sympathetic innervation, and vasodilatory small-fiber sensory innervation. Given our previous findings of peripheral pathologies in chronic pain conditions, we hypothesized that this vascular location may be a potential site of pathology and/or serotonergic and norepinephrine reuptake inhibitors (SNRI) drug action. SUBJECTS: Twenty-four female FM patients and nine female healthy control subjects were enrolled for study, with 14 additional female control subjects included from previous studies. AVS were identified in hypothenar skin biopsies from 18/24 FM patient and 14/23 control subjects. METHODS: Multimolecular immunocytochemistry to assess different types of cutaneous innervation in 3 mm skin biopsies from glabrous hypothenar and trapezius regions. RESULTS: AVS had significantly increased innervation among FM patients. The excessive innervation consisted of a greater proportion of vasodilatory sensory fibers, compared with vasoconstrictive sympathetic fibers. In contrast, sensory and sympathetic innervation to arterioles remained normal. Importantly, the sensory fibers express α2C receptors, indicating that the sympathetic innervation exerts an inhibitory modulation of sensory activity. CONCLUSIONS: The excessive sensory innervation to the glabrous skin AVS is a likely source of severe pain and tenderness in the hands of FM patients. Importantly, glabrous AVS regulate blood flow to the skin in humans for thermoregulation and to other tissues such as skeletal muscle during periods of increased metabolic demand. Therefore, blood flow dysregulation as a result of excessive innervation to AVS would likely contribute to the widespread deep pain and fatigue of FM. SNRI compounds may provide partial therapeutic benefit by enhancing the impact of sympathetically mediated inhibitory modulation of the excess sensory innervation.


Asunto(s)
Arteriolas/inervación , Arteriolas/metabolismo , Fibromialgia/metabolismo , Neuropéptidos/metabolismo , Piel/inervación , Vénulas/inervación , Vénulas/metabolismo , Adulto , Vías Aferentes/metabolismo , Vías Aferentes/patología , Anciano , Femenino , Fibromialgia/patología , Mano , Humanos , Persona de Mediana Edad , Piel/irrigación sanguínea , Piel/metabolismo , Adulto Joven
5.
Pain ; 164(11): 2435-2446, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37366590

RESUMEN

ABSTRACT: The mechanisms of pain in postherpetic neuralgia (PHN) are still unclear, with some studies showing loss of cutaneous sensory nerve fibers that seemed to correlate with pain level. We report results of skin biopsies and correlations with baseline pain scores, mechanical hyperalgesia, and the Neuropathic Pain Symptom Inventory (NPSI) in 294 patients who participated in a clinical trial of TV-45070, a topical semiselective sodium 1.7 channel (Nav1.7) blocker. Intraepidermal nerve fibers and subepidermal Nav1.7 immunolabeled fibers were quantified in skin punch biopsies from the area of maximal PHN pain, as well as from the contralateral, homologous (mirror image) region. Across the entire study population, a 20% reduction in nerve fibers on the PHN-affected side compared with that in the contralateral side was noted; however, the reduction was much higher in older individuals, approaching 40% in those aged 70 years or older. There was a decrease in contralateral fiber counts as well, also noted in prior biopsy studies, the mechanism of which is not fully clear. Nav1.7-positive immunolabeling was present in approximately one-third of subepidermal nerve fibers and did not differ on the PHN-affected vs contralateral sides. Using cluster analysis, 2 groups could be identified, with the first cluster showing higher baseline pain, higher NPSI scores for squeezing and cold-induced pain, higher nerve fiber density, and higher Nav1.7 expression. While Nav1.7 varies from patient to patient, it does not seem to be a key pathophysiological driver of PHN pain. Individual differences in Nav1.7 expression, however, may determine the intensity and sensory aspects of pain.


Asunto(s)
Neuralgia Posherpética , Neuralgia , Humanos , Anciano , Neuralgia Posherpética/tratamiento farmacológico , Piel/inervación , Administración Cutánea , Fibras Nerviosas
6.
Pain ; 163(5): 834-851, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35001054

RESUMEN

ABSTRACT: CB2 cannabinoid receptors (CB2) are a promising therapeutic target that lacks unwanted side effects of CB1 activation. However, the cell types expressing CB2 that mediate these effects remain poorly understood. We used transgenic mice with CB2 promoter-driven expression of enhanced green fluorescent protein (EGFP) to study cell types that express CB2 and suppress neuropathic nociception in a mouse model of chemotherapy-induced peripheral neuropathy. Structurally distinct CB2 agonists (AM1710 and LY2828360) suppressed paclitaxel-induced mechanical and cold allodynia in CB2EGFP reporter mice with established neuropathy. Antiallodynic effects of AM1710 were blocked by SR144528, a CB2 antagonist with limited CNS penetration. Intraplantar AM1710 administration suppressed paclitaxel-induced neuropathic nociception in CB2EGFP but not CB2 knockout mice, consistent with a local site of antiallodynic action. mRNA expression levels of the anti-inflammatory cytokine interleukin-10 were elevated in the lumbar spinal cord after intraplantar AM1710 injection along with the proinflammatory cytokine tumor necrosis factor alpha and chemokine monocyte chemoattractant protein-1. CB2EGFP, but not wildtype mice, exhibited anti-GFP immunoreactivity in the spleen. However, the anti-GFP signal was below the threshold for detection in the spinal cord and brain of either vehicle-treated or paclitaxel-treated CB2EGFP mice. EGFP fluorescence was coexpressed with CB2 immunolabeling in stratified patterns among epidermal keratinocytes. EGFP fluorescence was also expressed in dendritic cells in the dermis, Langerhans cells in the epidermis, and Merkel cells. Quantification of the EGFP signal revealed that Langerhans cells were dynamically increased in the epidermis after paclitaxel treatment. Our studies implicate CB2 expressed in previously unrecognized populations of skin cells as a potential target for suppressing chemotherapy-induced neuropathic nociception.


Asunto(s)
Antineoplásicos , Cannabinoides , Neuralgia , Animales , Antineoplásicos/efectos adversos , Cannabinoides/farmacología , Citocinas , Hiperalgesia/inducido químicamente , Hiperalgesia/tratamiento farmacológico , Ratones , Ratones Noqueados , Neuralgia/inducido químicamente , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Paclitaxel/toxicidad , Purinas , Piranos , Receptor Cannabinoide CB1 , Receptor Cannabinoide CB2/genética
8.
Front Pain Res (Lausanne) ; 2: 790524, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35295428

RESUMEN

This study investigated quantifiable measures of cutaneous innervation and algesic keratinocyte biomarkers to determine correlations with clinical measures of patient pain perception, with the intent to better discriminate between diabetic patients with painful diabetic peripheral neuropathy (PDPN) compared to patients with low-pain diabetic peripheral neuropathy (lpDPN) or healthy control subjects. A secondary objective was to determine if topical treatment with a 5% lidocaine patch resulted in correlative changes among the quantifiable biomarkers and clinical measures of pain perception, indicative of potential PDPN pain relief. This open-label proof-of-principle clinical research study consisted of a pre-treatment skin biopsy, a 4-week topical 5% lidocaine patch treatment regimen for all patients and controls, and a post-treatment skin biopsy. Clinical measures of pain and functional interference were used to monitor patient symptoms and response for correlation with quantitative skin biopsy biomarkers of innervation (PGP9.5 and CGRP), and epidermal keratinocyte biomarkers (Nav1.6, Nav1.7, CGRP). Importantly, comparable significant losses of epidermal neural innervation (intraepidermal nerve fibers; IENF) and dermal innervation were observed among PDPN and lpDPN patients compared with control subjects, indicating that innervation loss alone may not be the driver of pain in diabetic neuropathy. In pre-treatment biopsies, keratinocyte Nav1.6, Nav1.7, and CGRP immunolabeling were all significantly increased among PDPN patients compared with control subjects. Importantly, no keratinocyte biomarkers were significantly increased among the lpDPN group compared with control. In post-treatment biopsies, the keratinocyte Nav1.6, Nav1.7, and CGRP immunolabeling intensities were no longer different between control, lpDPN, or PDPN cohorts, indicating that lidocaine treatment modified the PDPN-related keratinocyte increases. Analysis of the PDPN responder population demonstrated that increased pretreatment keratinocyte biomarker immunolabeling for Nav1.6, Nav1.7, and CGRP correlated with positive outcomes to topical lidocaine treatment. Epidermal keratinocytes modulate the signaling of IENF, and several analgesic and algesic signaling systems have been identified. These results further implicate epidermal signaling mechanisms as modulators of neuropathic pain conditions, highlight a novel potential mode of action for topical treatments, and demonstrate the utility of comprehensive skin biopsy evaluation to identify novel biomarkers in clinical pain studies.

9.
Curr Pain Headache Rep ; 14(3): 179-88, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20425194

RESUMEN

Numerous mechanisms are implicated in the perception of pain. Although many anatomical, molecular, and functional components have been identified, a comprehensive and integrated theory of pain perception has yet to be firmly established that fits the diverse clinical experience. Acute pain involves the activation of several varieties of small primary sensory neurons, collectively termed nociceptors, which have small-caliber unmyelinated or myelinated axons (C and Adelta fibers, respectively) that innervate all body tissues. They are stimulated by noxious stimuli that activate ion channels on the endings either directly or through the release of cytokines from damaged or stressed tissues. A variety of drugs successfully treats acute pain by targeting these ion channels or cytokine interactions. Paradoxically, several chronic neuropathic pain conditions are associated with a loss of small-caliber axons and have an unpredictable and poor response to current drugs, especially at doses that do not cause severe side effects. In an attempt to further an integrated theory of pain perception, this review focuses upon the presumed role of small-caliber innervation, particularly to the epidermis and cutaneous vasculature, and the clinical manifestations, diagnosis, and treatment of pathologies of this innervation.


Asunto(s)
Mecanorreceptores/citología , Dolor/fisiopatología , Animales , Humanos , Mecanorreceptores/metabolismo , Vías Nerviosas/anatomía & histología , Neuronas Aferentes/citología , Neuronas Aferentes/metabolismo , Dolor/diagnóstico , Piel/inervación
10.
Neurobiol Pain ; 5: 100021, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31194066

RESUMEN

Despite enormous investment in research and development of novel treatments, there remains a lack of predictable, effective, and safe therapeutics for human chronic neuropathic pain (NP) afflictions. NP continues to increase among the population and treatments remain a major unmet public health care need. In recent years, numerous costly (time and money) failures have occurred attempting to translate successful animal pain model results, typically using rodents, to human clinical trials. These continued failures point to the essential need for better animal models of human pain conditions. To address this challenge, we have previously developed a peripheral neuritis trauma (PNT) model of chronic pain induced by a proximal sciatic nerve irritation in pigs, which have a body size, metabolism, skin structure, and cutaneous innervation more similar to humans. Here, we set out to determine the extent that the PNT model presents with cutaneous neuropathologies consistent with those associated with human chronic NP afflictions. Exactly as is performed in human skin biopsies, extensive quantitative multi-molecular immunofluorescence analyses of porcine skin biopsies were performed to assess cutaneous innervation and skin structure. ChemoMorphometric Analysis (CMA) results demonstrated a significant reduction in small caliber intraepidermal nerve fiber (IENF) innervation, altered dermal vascular innervation, and aberrant analgesic/algesic neurochemical properties among epidermal keratinocytes, which are implicated in modulating sensory innervation. These comprehensive pathologic changes very closely resemble those observed from CMA of human skin biopsies collected from NP afflictions. The results indicate that the porcine PNT model is more appropriate for translational NP research compared with commonly utilized rodent models. Because the PNT model creates cutaneous innervation and keratinocyte immunolabeling alterations consistent with human NP conditions, use of this animal model for NP testing and treatment response characteristics will likely provide more realistic results to direct successful translation to humans.

11.
PLoS One ; 14(5): e0216527, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31107888

RESUMEN

In addition to large plexiform neurofibromas (pNF), NF1 patients are frequently disfigured by cutaneous neurofibromas (cNF) and are often afflicted with chronic pain and itch even from seemingly normal skin areas. Both pNFs and cNF consist primarily of benign hyperproliferating nonmyelinating Schwann cells (nSC). While pNF clearly arise within deep nerves and plexuses, the role of cutaneous innervation in the origin of cNF and in chronic itch and pain is unknown. First, we conducted a comprehensive, multi-molecular, immunofluorescence (IF) analyses on 3mm punch biopsies from three separate locations in normal appearing, cNF-free skin in 19 NF1 patients and skin of 16 normal subjects. At least one biopsy in 17 NF1 patients had previously undescribed micro-lesions consisting of a small, dense cluster of nonpeptidergic C-fiber endings and the affiliated nSC consistently adjoining adnexal structures-dermal papillae, hair follicles, sweat glands, sweat ducts, and arterioles-where C-fiber endings normally terminate. Similar micro-lesions were detected in hind paw skin of mice with conditionally-induced SC Nf1-/- mutations. Hypothesizing that these microlesions were pre-cNF origins of cNF, we subsequently analyzed numerous overt, small cNF (s-cNF, 3-6 mm) and discovered that each had an adnexal structure at the epicenter of vastly increased nonpeptidergic C-fiber terminals, accompanied by excessive nSC. The IF and functional genomics assays indicated that neurturin (NTRN) and artemin (ARTN) signaling through cRET kinase and GFRα2 and GFRα3 co-receptors on the aberrant C-fiber endings and nSC may mutually promote the onset of pre-cNF and their evolution to s-cNF. Moreover, TrpA1 and TrpV1 receptors may, respectively, mediate symptoms of chronic itch and pain. These newly discovered molecular characteristics might be targeted to suppress the development of cNF and to treat chronic itch and pain symptoms in NF1 patients.


Asunto(s)
Fibras Nerviosas Amielínicas/metabolismo , Neurofibroma Plexiforme/patología , Neurofibromatosis 1/patología , Células de Schwann/metabolismo , Neoplasias Cutáneas/patología , Anciano , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fibras Nerviosas Amielínicas/patología , Proteínas del Tejido Nervioso/metabolismo , Neurofibroma Plexiforme/metabolismo , Neurofibromatosis 1/inmunología , Neurturina/metabolismo , Células de Schwann/patología , Transducción de Señal , Neoplasias Cutáneas/metabolismo , Adulto Joven
12.
J Comp Neurol ; 501(4): 543-67, 2007 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-17278131

RESUMEN

Diabetic neuropathy (DN) is a common severe complication of type 2 diabetes. The symptoms of chronic pain, tingling, and numbness are generally attributed to small fiber dysfunction. However, little is known about the pathology among innervation to distal extremities, where symptoms start earliest and are most severe, and where the innervation density is the highest and includes a wide variety of large fiber sensory endings. Our study assessed the immunochemistry, morphology, and density of the nonvascular innervation in glabrous skin from the hands of aged nondiabetic rhesus monkeys and from age-matched monkeys that had different durations of spontaneously occurring type 2 diabetes. Age-related reductions occurred among all types of innervation, with epidermal C-fiber endings preferentially diminishing earlier than presumptive Adelta-fiber endings. In diabetic monkeys epidermal innervation density diminished faster, became more unevenly distributed, and lost immunodetectable expression of calcitonin gene-related peptide and capsaicin receptors, TrpV1. Pacinian corpuscles also deteriorated. However, during the first few years of hyperglycemia, a surprising hypertrophy occurred among terminal arbors of remaining epidermal endings. Hypertrophy also occurred among Meissner corpuscles and Merkel endings supplied by Abeta fibers. After longer-term hyperglycemia, Meissner corpuscle hypertrophy declined but the number of corpuscles remained higher than in age-matched nondiabetics. However, the diabetic Meissner corpuscles had an abnormal structure and immunochemistry. In contrast, the expanded Merkel innervation was reduced to age-matched nondiabetic levels. These results indicate that transient phases of substantial innervation remodeling occur during the progression of diabetes, with differential increases and decreases occurring among the varieties of innervation.


Asunto(s)
Envejecimiento/patología , Diabetes Mellitus Tipo 2/patología , Mano/patología , Corpúsculos de Pacini/patología , Piel/inervación , Factores de Edad , Envejecimiento/metabolismo , Animales , Atrofia , Péptido Relacionado con Gen de Calcitonina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Técnica del Anticuerpo Fluorescente/métodos , Proteína GAP-43/metabolismo , Hipertrofia , Macaca mulatta , Mecanorreceptores/citología , Mecanorreceptores/metabolismo , Modelos Biológicos , Proteínas de Neurofilamentos/metabolismo , Proteínas/metabolismo , Piel/patología , Canales Catiónicos TRPV/metabolismo
13.
Pain ; 120(3): 244-266, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16427199

RESUMEN

Complex regional pain syndromes (CRPS, type I and type II) are devastating conditions that can occur following soft tissue (CRPS type I) or nerve (CRPS type II) injury. CRPS type I, also known as reflex sympathetic dystrophy, presents in patients lacking a well-defined nerve lesion, and has been questioned as to whether or not it is a true neuropathic condition with an organic basis. As described here, glabrous and hairy skin samples from the amputated upper and lower extremity from two CRPS type I diagnosed patients were processed for double-label immunofluorescence using a battery of antibodies directed against neural-related proteins and mediators of nociceptive sensory function. In CRPS affected skin, several neuropathologic alterations were detected, including: (1) the presence of numerous abnormal thin caliber NF-positive/MBP-negative axons innervating hair follicles; (2) a decrease in epidermal, sweat gland, and vascular innervation; (3) a loss of CGRP expression on remaining innervation to vasculature and sweat glands; (4) an inappropriate expression of NPY on innervation to superficial arterioles and sweat glands; and (5) a loss of vascular endothelial integrity and extraordinary vascular hypertrophy. The results are evidence of widespread cutaneous neuropathologic changes. Importantly, in these CRPS type I patients, the myriad of clinical symptoms observed had detectable neuropathologic correlates.


Asunto(s)
Vías Aferentes/patología , Fibras Nerviosas/patología , Enfermedades del Sistema Nervioso Periférico/patología , Enfermedades Vasculares Periféricas/patología , Distrofia Simpática Refleja/patología , Piel/irrigación sanguínea , Piel/inervación , Adulto , Axones/patología , Medicina Basada en la Evidencia , Extremidades/irrigación sanguínea , Extremidades/inervación , Extremidades/patología , Humanos , Masculino , Persona de Mediana Edad , Piel/patología
14.
Rev Environ Health ; 31(2): 281-94, 2016 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-27105483

RESUMEN

Fibromyalgia syndrome (FMS) is a clinical disorder predominant in females with unknown etiology and medically unexplained symptoms (MUS), similar to other afflictions, including irritable bowel syndrome (IBS), chronic fatigue syndrome (CFS), post-traumatic stress disorder (PTSD), Gulf War illness (GFI), and others. External environmental stimuli drive behavior and impact physiologic homeostasis (internal environment) via autonomic functioning. These environments directly impact the individual affective state (mind), which feeds back to regulate physiology (body). FMS has emerged as a complex disorder with pathologies identified among neurotransmitter and enzyme levels, immune/cytokine functionality, cortical volumes, cutaneous innervation, as well as an increased frequency among people with a history of traumatic and/or emotionally negative events, and specific personality trait profiles. Yet, quantitative physical evidence of pathology or disease etiology among FMS has been limited (as with other afflictions with MUS). Previously, our group published findings of increased peptidergic sensory innervation associated with the arterio-venous shunts (AVS) in the glabrous hand skin of FMS patients, which provides a plausible mechanism for the wide-spread FMS symptomology. This review focuses on FMS as a model affliction with MUS to discuss the implications of the recently discovered peripheral innervation alterations, explore the role of peripheral innervation to central sensitization syndromes (CSS), and examine possible estrogen-related mechanisms through which external and internal environmental factors may contribute to FMS etiology and possibly other afflictions with MUS.


Asunto(s)
Exposición a Riesgos Ambientales/efectos adversos , Fibromialgia/etiología , Síntomas sin Explicación Médica , Sistema Nervioso Central/fisiopatología , Fibromialgia/patología , Fibromialgia/fisiopatología , Fibromialgia/psicología , Homeostasis , Humanos , Estilo de Vida , Sistema Nervioso Periférico/fisiopatología , Factores de Riesgo , Piel/irrigación sanguínea , Piel/inervación , Estrés Fisiológico , Estrés Psicológico/complicaciones , Estrés Psicológico/fisiopatología , Heridas y Lesiones/complicaciones , Heridas y Lesiones/fisiopatología
15.
J Pain ; 17(7): 775-86, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26979998

RESUMEN

UNLABELLED: Chemotherapy-induced peripheral neuropathy (CIPN) is a disruptive and persistent side effect of cancer treatment with paclitaxel. Recent reports showed that paclitaxel treatment results in the activation of Toll-like receptor 4 (TLR4) signaling and increased expression of monocyte chemoattractant protein 1 (MCP-1) in dorsal root ganglion cells. In this study, we sought to determine whether an important consequence of this signaling and also a key step in the CIPN phenotype was the recruitment and infiltration of macrophages into dorsal root ganglia (DRG). Here, we show that macrophage infiltration does occur in a time course that matches the onset of the behavioral CIPN phenotype in Sprague-Dawley rats. Moreover, depletion of macrophages by systemic administration of liposome-encapsulated clodronate (clophosome) partially reversed behavioral signs of paclitaxel-induced CIPN as well as reduced tumor necrosius factor α expression in DRG. Intrathecal injection of MCP-1 neutralizing antibodies reduced paclitaxel-induced macrophage recruitment into the DRG and also blocked the behavioral signs of CIPN. Intrathecal treatment with the TLR4 antagonist lipopolysaccharide-RS (LPS-RS) blocked mechanical hypersensitivity, reduced MCP-1 expression, and blocked the infiltration of macrophages into the DRG in paclitaxel-treated rats. The inhibition of macrophage infiltration into DRG after paclitaxel treatment with clodronate or LPS-RS prevented the loss of intraepidermal nerve fibers (IENFs) observed after paclitaxel treatment alone. These results are the first to indicate a mechanistic link such that activation of TLR4 by paclitaxel leads to increased expression of MCP-1 by DRG neurons resulting in macrophage infiltration to the DRG that express inflammatory cytokines and the combination of these events results in IENF loss and the development of behavioral signs of CIPN. PERSPECTIVE: This paper shows that activation of innate immunity by paclitaxel results in a sequence of signaling events that results in the infiltration of the dorsal root ganglia by activated macrophages. Macrophages appear to drive the development of behavioral hypersensitivity and the loss of distal epidermal nerve fibers, and hence play an important role in the mechanism of paclitaxel-related neuropathy.


Asunto(s)
Antineoplásicos Fitogénicos/toxicidad , Movimiento Celular/efectos de los fármacos , Ganglios Espinales/patología , Macrófagos/efectos de los fármacos , Paclitaxel/toxicidad , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Anestésicos/administración & dosificación , Animales , Anticuerpos/farmacología , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Conservadores de la Densidad Ósea/administración & dosificación , Quimiocina CCL2/inmunología , Quimiocina CCL2/metabolismo , Ácido Clodrónico/administración & dosificación , Modelos Animales de Enfermedad , Vías de Administración de Medicamentos , Proteína GAP-43/metabolismo , Hiperalgesia/etiología , Isoflurano/administración & dosificación , Lipopolisacáridos/farmacología , Macrófagos/fisiología , Masculino , Umbral del Dolor/efectos de los fármacos , Enfermedades del Sistema Nervioso Periférico/tratamiento farmacológico , Enfermedades del Sistema Nervioso Periférico/patología , Ratas , Ratas Sprague-Dawley , Médula Espinal/patología , Bazo/efectos de los fármacos , Bazo/patología , Factores de Tiempo , Factor de Necrosis Tumoral alfa/metabolismo , Ubiquitina Tiolesterasa/metabolismo
16.
Pain Rep ; 1(3)2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28210712

RESUMEN

INTRODUCTION: Epidermal keratinocytes are increasingly recognized as active participants in the sensory transduction of itch and pain, processes known to involve primary afferent glutamatergic neurons. However the role of keratinocyte glutamate signaling in sensory functioning is not fully understood. Here, we present the observation of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid type glutamate receptors (AMPAR) in epidermal keratinocytes. METHODS: Immunohistochemical and in situ hybridization analyses were conducted to assess the expression of AMPAR subunits in epidermal keratinocytes in mouse and human skin samples, and in organotypic cultures of human keratinocytes. In addition, RTPCR further confirmed the expression of GluA4-containing AMPAR in epidermal keratinocytes. RESULTS: We found prominent immunolabeling (IL) for the GluA4 subunit of AMPAR in keratinocytes of glabrous and hairy skin of mouse epidermis, as well as in human epidermal keratinocytes. RTPCR confirmed Gria4 transcript expression in epidermal mouse keratinocytes. In addition, expression of GRIA4 mRNA was confirmed in epidermal human keratinocytes by in situ hybridization. Immunohistochemical studies conducted in human skin biopsies from patients with atopic dermatitis (AD) and postherpetic neuralgia (PHN) demonstrate that keratinocyte expression of GluA4 can be altered under pathological conditions. Moreover, a decrease of GluA4 expression was observed in organotypic cultures of human keratinocytes after direct application of algogenic agents. CONCLUSIONS: We provide evidence that GluA4-containing AMPAR are expressed in epidermal keratinocytes, that human pruritic and painful dermatopathologies have alterations in the keratinocyte expression levels of GluA4-containing AMPAR, and that itch and pain producing substances can directly regulate their production in keratinocytes.

17.
Neurosci Lett ; 380(3): 295-9, 2005 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-15862905

RESUMEN

Previous studies have shown decreased immunoreactive glial fibrillary acidic protein (GFAP) in the supraoptic nucleus (SON) when magnocellular neuroendocrine cells (MNCs) are activated by lactation or dehydration. This is thought to underlie structural plasticity of glial processes that occurs during these times. Here, we investigated how this apparent reduction in protein relates to GFAP mRNA expression in the dehydrated rat as visualized by in situ hybridization. Densitometry of silver grains in the SON revealed low levels of mRNA expression in control, 2-day dehydrated and 21-day rehydrated (R21) animals. Conversely, the SON from 7-day dehydrated (D7) subjects displayed significantly more silver grains. Thus, the pattern of GFAP mRNA expression is the inverse of what we previously observed for GFAP immunoreactivity in tissue sections of the SON. No differences in mRNA levels due to hydration state were seen in the lateral hypothalamic area, suggesting that increases in GFAP mRNA at D7 were specifically related to MNC activation. These data indicate a divergence in GFAP mRNA and protein expression in the SON.


Asunto(s)
Astrocitos/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Plasticidad Neuronal/fisiología , ARN Mensajero/metabolismo , Núcleo Supraóptico/metabolismo , Equilibrio Hidroelectrolítico/fisiología , Animales , Deshidratación/genética , Deshidratación/metabolismo , Deshidratación/fisiopatología , Regulación hacia Abajo/fisiología , Regulación de la Expresión Génica/fisiología , Proteína Ácida Fibrilar de la Glía/genética , Área Hipotalámica Lateral/metabolismo , Masculino , Sistemas Neurosecretores/metabolismo , Neurohipófisis/metabolismo , Ratas , Ratas Sprague-Dawley , Regulación hacia Arriba/fisiología , Vasopresinas/metabolismo
18.
Pain Ther ; 4(1): 17-32, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25627665

RESUMEN

Chronic pain is a complex disorder with multiple etiologies for which the pathologic mechanisms are still largely unknown, making effective treatment a difficult clinical task. Achieving pain relief along with improved function and quality of life is the primary goal of pain clinicians; however, most patients and healthcare professionals consider 30% pain improvement to be clinically significant-a success level that would be unacceptable in other areas of medicine. Furthermore, patients with chronic pain frequently have multiple comorbidities, including depression and sleep apnea, and most have seen several physicians prior to being seen by a pain specialist, have more than three specific pain generators, and are taking multiple medications. The addition of further oral medications to control pain increases the risk of drug-drug interactions and side effects. However, topical analgesics have the advantage of local application with limited systemic levels of drug. Topical therapies benefit from reduced side effects, lower risk of drug-drug interactions, better patient acceptability/compliance, and improved tolerability. This two-part paper is a review of topical analgesics and their potential role in the treatment of chronic pain.

19.
Pain Ther ; 4(1): 33-50, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25630651

RESUMEN

In Part One of this two-part series, we discussed skin physiology and anatomy as well as generalities concerning topical analgesics. This modality of therapy has lesser side effects and drug-drug interactions, and patients tolerate this form of therapy better than many oral options. Unfortunately, this modality is not used as often as it could be in chronic pain states, such as that from neuropathic pain. Part Two discusses specific therapies, local anesthetics, and other drugs, as well as how a clinician might use specific aspects of a patient's neuropathic pain presentation to help guide them in the selection of a topical agent.

20.
PLoS One ; 8(2): e56744, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23457608

RESUMEN

Cutaneous ATP release plays an important role in both epidermal stratification and chronic pain, but little is known about ATP release mechanisms in keratinocytes that comprise the epidermis. In this study, we analyzed ATP release from cultured human neonatal keratinocytes briefly exposed to air, a process previously demonstrated to trigger ATP release from these cells. We show that exposing keratinocytes to air by removing media for 15 seconds causes a robust, long-lasting ATP release. This air-stimulated ATP release was increased in calcium differentiated cultures which showed a corresponding increase in connexin 43 mRNA, a major component of keratinocyte hemichannels. The known connexin hemichannel inhibitors 1-octanol and carbenoxolone both significantly reduced air-stimulated ATP release, as did two drugs traditionally used as ABC transporter inhibitors (glibenclamide and verapamil). These same 4 inhibitors also prevented an increase in the uptake of a connexin permeable dye induced by air exposure, confirming that connexin hemichannels are open during air-stimulated ATP release. In contrast, activity of the MDR1 ABC transporter was reduced by air exposure and the drugs that inhibited air-stimulated ATP release had differential effects on this transporter. These results indicate that air exposure elicits non-vesicular release of ATP from keratinocytes through connexin hemichannels and that drugs used to target connexin hemichannels and ABC transporters may cross-inhibit. Connexins represent a novel, peripheral target for the treatment of chronic pain and dermatological disease.


Asunto(s)
Adenosina Trifosfato/metabolismo , Aire , Conexinas/metabolismo , Queratinocitos/metabolismo , 1-Octanol/farmacología , Adenosina Trifosfato/deficiencia , Carbenoxolona/farmacología , Dolor Crónico/metabolismo , Conexinas/antagonistas & inhibidores , Células Epidérmicas , Homeostasis/efectos de los fármacos , Humanos , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Queratinocitos/citología , Queratinocitos/efectos de los fármacos , Enfermedades de la Piel/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA