Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38608158

RESUMEN

Transferring nanocrystals (NCs) from the laboratory environment toward practical applications has raised new challenges. HgTe appears as the most spectrally tunable infrared colloidal platform. Its low-temperature synthesis reduces the growth energy cost yet also favors sintering. Once coupled to a read-out circuit, the Joule effect aggregates the particles, leading to a poorly defined optical edge and large dark current. Here, we demonstrate that CdS shells bring the expected thermal stability (no redshift upon annealing, reduced tendency to form amalgams, and preservation of photoconduction after an atomic layer deposition process). The electronic structure of these confined particles is unveiled using k.p self-consistent simulations showing a significant exciton binding energy of ∼200 meV. After shelling, the material displays a p-type behavior that favors the generation of photoconductive gain. The latter is then used to increase the external quantum efficiency of an infrared imager, which now reaches 40% while presenting long-term stability.

2.
Nano Lett ; 23(4): 1363-1370, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36692377

RESUMEN

As the field of nanocrystal-based optoelectronics matures, more advanced techniques must be developed in order to reveal the electronic structure of nanocrystals, particularly with device-relevant conditions. So far, most of the efforts have been focused on optical spectroscopy, and electrochemistry where an absolute energy reference is required. Device optimization requires probing not only the pristine material but also the material in its actual environment (i.e., surrounded by a transport layer and an electrode, in the presence of an applied electric field). Here, we explored the use of photoemission microscopy as a strategy for operando investigation of NC-based devices. We demonstrate that the method can be applied to a variety of materials and device geometries. Finally, we show that it provides direct access to the metal-semiconductor interface band bending as well as the distance over which the gate effect propagates in field-effect transistors.

3.
Nano Lett ; 22(21): 8779-8785, 2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36190814

RESUMEN

While the integration of nanocrystals as an active medium for optoelectronic devices progresses, light management strategies are becoming required. Over recent years, several photonic structures (plasmons, cavities, mirrors, etc.) have been coupled to nanocrystal films to shape the absorption spectrum, tune the directionality, and so on. Here, we explore a photonic equivalent of the acoustic Helmholtz resonator and propose a design that can easily be fabricated. This geometry combines a strong electromagnetic field magnification and a narrow channel width compatible with efficient charge conduction despite hopping conduction. At 80 K, the device reaches a responsivity above 1 A·W-1 and a detectivity above 1011 Jones (3 µm cutoff) while offering a significantly faster time-response than vertical geometry diodes.

4.
Nanoscale ; 15(21): 9440-9448, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37158270

RESUMEN

As nanocrystal-based devices gain maturity, a comprehensive understanding of their electronic structure is necessary for further optimization. Most spectroscopic techniques typically examine pristine materials and disregard the coupling of the active material to its actual environment, the influence of an applied electric field, and possible illumination effects. Therefore, it is critical to develop tools that can probe device in situ and operando. Here, we explore photoemission microscopy as a tool to unveil the energy landscape of a HgTe NC-based photodiode. We propose a planar diode stack to facilitate surface-sensitive photoemission measurements. We demonstrate that the method gives direct quantification of the diode's built-in voltage. Furthermore, we discuss how it is affected by particle size and illumination. We show that combining SnO2 and Ag2Te as electron and hole transport layers is better suited for extended-short-wave infrared materials than materials with larger bandgaps. We also identify the effect of photodoping over the SnO2 layer and propose a strategy to overcome it. Given its simplicity, the method appears to be of utmost interest for screening diode design strategies.

5.
Nanoscale ; 14(26): 9359-9368, 2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35726871

RESUMEN

HgTe nanocrystals, thanks to quantum confinement, present a broadly tunable band gap all over the infrared spectral range. In addition, significant efforts have been dedicated to the design of infrared sensors with an absorbing layer made of nanocrystals. However, most efforts have been focused on single pixel sensors. Nanocrystals offer an appealing alternative to epitaxially grown semiconductors for infrared imaging by reducing the material growth cost and easing the coupling to the readout circuit. Here we propose a strategy to design an infrared focal plane array from a single fabrication step. The focal plane array (FPA) relies on a specifically designed readout circuit enabling in plane electric field application and operation in photoconductive mode. We demonstrate a VGA format focal plane array with a 15 µm pixel pitch presenting an external quantum efficiency of 4-5% (15% internal quantum efficiency) for a cut-off around 1.8 µm and operation using Peltier cooling only. The FPA is compatible with 200 fps imaging full frame and imaging up to 340 fps is demonstrated by driving a reduced area of the FPA. In the last part of the paper, we discuss the cost of such sensors and show that the latter is only driven by labor costs while we estimate the cost of the NC film to be in the 10-20 € range.

6.
J Phys Chem Lett ; 13(30): 6919-6926, 2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35867700

RESUMEN

While HgTe nanocrystals (NCs) in the mid-infrared region have reached a high level of maturity, their far-infrared counterparts remain far less studied, raising the need for an in-depth investigation of the material before efficient device integration can be considered. Here, we explore the effect of temperature and pressure on the structural, spectroscopic, and transport properties of HgTe NCs displaying an intraband absorption at 10 THz. The temperature leads to a very weak modulation of the spectrum as opposed to what was observed for strongly confined HgTe NCs. HgTe NC films present ambipolar conduction with a clear prevalence of electron conduction as confirmed by transistor and thermoelectric measurements. Under the application of pressure, the material undergoes phase transitions from the zinc blende to cinnabar phase and later to the rock salt phase which we reveal using joint X-ray diffraction and infrared spectroscopy measurements. We discuss how the pressure existence domain of each phase is affected by the particle size.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA