Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(29): 7569-7574, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29954862

RESUMEN

Elicitation of broadly neutralizing antibodies (bnAbs) is a leading strategy in rational vaccine design against antigenically diverse pathogens. Here, we studied a panel of monoclonal antibodies (mAbs) from mice immunized with the hepatitis C virus (HCV) envelope glycoproteins E1E2. Six of the mAbs recognize the conserved E2 antigenic site 412-423 (AS412) and cross-neutralize diverse HCV genotypes. Immunogenetic and structural analysis revealed that the antibodies originated from two different germline (GL) precursors and bind AS412 in a ß-hairpin conformation. Intriguingly, the anti-HCV activity of one antibody lineage is associated with maturation of the light chain (LC), whereas the other lineage is dependent on heavy-chain (HC) maturation. Crystal structures of GL precursors of the LC-dependent lineage in complex with AS412 offer critical insights into the maturation process of bnAbs to HCV, providing a scientific foundation for utilizing the mouse model to study AS412-targeting vaccine candidates.


Asunto(s)
Anticuerpos Neutralizantes/química , Hepacivirus/química , Anticuerpos contra la Hepatitis C/química , Cadenas Ligeras de Inmunoglobulina/química , Anticuerpos de Cadena Única/química , Proteínas del Envoltorio Viral/química , Animales , Anticuerpos Neutralizantes/inmunología , Línea Celular , Hepacivirus/inmunología , Anticuerpos contra la Hepatitis C/inmunología , Humanos , Cadenas Ligeras de Inmunoglobulina/inmunología , Ratones , Anticuerpos de Cadena Única/inmunología , Proteínas del Envoltorio Viral/inmunología , Vacunas contra Hepatitis Viral/química , Vacunas contra Hepatitis Viral/inmunología
2.
Proc Natl Acad Sci U S A ; 113(29): E4238-47, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27357687

RESUMEN

Protein microarrays enable investigation of diverse biochemical properties for thousands of proteins in a single experiment, an unparalleled capacity. Using a high-density system called HaloTag nucleic acid programmable protein array (HaloTag-NAPPA), we created high-density protein arrays comprising 12,000 Arabidopsis ORFs. We used these arrays to query protein-protein interactions for a set of 38 transcription factors and transcriptional regulators (TFs) that function in diverse plant hormone regulatory pathways. The resulting transcription factor interactome network, TF-NAPPA, contains thousands of novel interactions. Validation in a benchmarked in vitro pull-down assay revealed that a random subset of TF-NAPPA validated at the same rate of 64% as a positive reference set of literature-curated interactions. Moreover, using a bimolecular fluorescence complementation (BiFC) assay, we confirmed in planta several interactions of biological interest and determined the interaction localizations for seven pairs. The application of HaloTag-NAPPA technology to plant hormone signaling pathways allowed the identification of many novel transcription factor-protein interactions and led to the development of a proteome-wide plant hormone TF interactome network.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/metabolismo , Análisis por Matrices de Proteínas , Mapeo de Interacción de Proteínas
3.
Physiol Plant ; 152(3): 558-70, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24716623

RESUMEN

The high-affinity K(+) transporter HAK5 is a key system for root K(+) uptake and, under very low external K(+), the only one capable of supplying K(+) to the plant. Functional HAK5-mediated K(+) uptake should be tightly regulated for plant adaptation to different environmental conditions. Thus, it has been described that the gene encoding the transporter is transcriptionally regulated, being highly induced under K(+) limitation. Here we show that environmental conditions, such as the lack of K(+), NO(3)(-) or P, that induced a hyperpolarization of the plasma membrane of root cells, induce HAK5 transcription. However, only the deprivation of K(+) produces functional HAK5-mediated K(+) uptake in the root. These results suggest on the one hand the existence of a posttranscriptional regulation of HAK5 elicited by the low K(+) signal and on the other that HAK5 may be involved in yet-unknown functions related to NO(3)(-) and P deficiencies. These results have been obtained here with Solanum lycopersicum (cv. Micro-Tom) as well as Arabidopsis thaliana plants, suggesting that the posttranscriptional regulation of high-affinity HAK transporters take place in all plant species.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , Antiportadores de Potasio-Hidrógeno/metabolismo , Potasio/metabolismo , Solanum lycopersicum/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico , Membrana Celular/metabolismo , Solanum lycopersicum/genética , Nitratos/metabolismo , Fósforo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Antiportadores de Potasio-Hidrógeno/genética , Transducción de Señal
5.
Plant Cell Physiol ; 52(9): 1603-12, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21771865

RESUMEN

K(+) is an essential macronutrient required by plants to complete their life cycle. It fulfills important functions and it is widely used as a fertilizer to increase crop production. Thus, the identification of the systems involved in K(+) acquisition by plants has always been a research goal as it may eventually produce molecular tools to enhance crop productivity further. This review is focused on the recent findings on the systems involved in K(+) acquisition. From Epstein's pioneering work >40 years ago, K(+) uptake was considered to consist of a high- and a low-affinity component. The subsequent molecular approaches identified genes encoding K(+) transport systems which could be involved in the first step of K(+) uptake at the plant root. Insights into the regulation of these genes and the proteins that they encode have also been gained in recent studies. A demonstration of the role of the two main K(+) uptake systems at the root, AtHKA5 and AKT1, has been possible with the study of Arabidopsis thaliana T-DNA insertion lines that knock out these genes. AtHAK5 was revealed as the only uptake system at external concentrations <10 µM. Between 10 and 200 µM both AtHAK5 and AKT1 contribute to K(+) acquisition. At external concentrations >500 µM, AtHAK5 is not relevant and AKT1's contribution to K(+) uptake becomes more important. At 10 mM K(+), unidentified systems may provide sufficient K(+) uptake for plant growth.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Raíces de Plantas/metabolismo , Canales de Potasio/metabolismo , Potasio/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , ADN Bacteriano/genética , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Mutagénesis Insercional , Raíces de Plantas/fisiología , Canales de Potasio/genética , Antiportadores de Potasio-Hidrógeno , Procesamiento Postranscripcional del ARN , Simportadores/genética , Simportadores/metabolismo
6.
Sci Transl Med ; 13(584)2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33692134

RESUMEN

Current treatments for chronic pain rely largely on opioids despite their substantial side effects and risk of addiction. Genetic studies have identified in humans key targets pivotal to nociceptive processing. In particular, a hereditary loss-of-function mutation in NaV1.7, a sodium channel protein associated with signaling in nociceptive sensory afferents, leads to insensitivity to pain without other neurodevelopmental alterations. However, the high sequence and structural similarity between NaV subtypes has frustrated efforts to develop selective inhibitors. Here, we investigated targeted epigenetic repression of NaV1.7 in primary afferents via epigenome engineering approaches based on clustered regularly interspaced short palindromic repeats (CRISPR)-dCas9 and zinc finger proteins at the spinal level as a potential treatment for chronic pain. Toward this end, we first optimized the efficiency of NaV1.7 repression in vitro in Neuro2A cells and then, by the lumbar intrathecal route, delivered both epigenome engineering platforms via adeno-associated viruses (AAVs) to assess their effects in three mouse models of pain: carrageenan-induced inflammatory pain, paclitaxel-induced neuropathic pain, and BzATP-induced pain. Our results show effective repression of NaV1.7 in lumbar dorsal root ganglia, reduced thermal hyperalgesia in the inflammatory state, decreased tactile allodynia in the neuropathic state, and no changes in normal motor function in mice. We anticipate that this long-lasting analgesia via targeted in vivo epigenetic repression of NaV1.7 methodology we dub pain LATER, might have therapeutic potential in management of persistent pain states.


Asunto(s)
Analgesia , Dolor Crónico , Neuralgia , Animales , Ganglios Espinales , Hiperalgesia , Ratones
7.
Physiol Plant ; 139(2): 220-8, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-20088908

RESUMEN

The high-affinity K(+) transporter AtHAK5 and the inward-rectifier K(+) channel AtAKT1 have been described to contribute to K(+) uptake in Arabidopsis thaliana. Studies with T-DNA insertion lines showed that both systems participate in the high-affinity range of concentrations and only AtAKT1 in the low-affinity range. However the contribution of other systems could not be excluded with the information and plant material available. The results presented here with a double knock-out athak5, atakt1 mutant show that AtHAK5 is the only system mediating K(+) uptake at concentrations below 0.01 mM. In the range between 0.01 and 0.05 mM K(+) AtHAK5 and AtAKT1 are the only contributors to K(+) acquisition. At higher K(+) concentrations, unknown systems come into operation and participate together with AtAKT1 in low-affinity K(+) uptake. These systems can supply sufficient K(+) to promote plant growth even in the absence of AtAKT1 or in the presence of 10 mM K(+) where AtAKT1 is not essential.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Canales de Potasio/metabolismo , Potasio/metabolismo , Simportadores/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Transporte Biológico , ADN Bacteriano , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Mutagénesis Insercional , Mutación , Canales de Potasio/genética , Antiportadores de Potasio-Hidrógeno , Simportadores/genética
8.
Methods Mol Biol ; 1911: 381-393, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30593640

RESUMEN

The envelope glycoproteins E1 and E2 of hepatitis C virus form a heterodimeric complex on the viral surface. They are the targets of neutralizing antibodies and are being investigated as potential vaccine antigens. Because of the high level of cysteine residues and N-glycosylation sites in the polypeptide sequences, it is technically challenging to produce pure, folded recombinant E1, E2, and E1E2 complex for downstream analysis. In this chapter, the methods we used to isolate a panel of human antibodies specific to diverse antigenic regions on the glycoproteins are discussed. The antibodies have been found to be valuable reagents for the study of HCV envelope glycoproteins, including the determination of the first E2 core domain structure.


Asunto(s)
Técnicas de Visualización de Superficie Celular/métodos , Hepacivirus/inmunología , Anticuerpos contra la Hepatitis C/aislamiento & purificación , Proteínas del Envoltorio Viral/inmunología , Bacteriófagos/genética , Bacteriófagos/metabolismo , Técnicas de Visualización de Superficie Celular/instrumentación , Epítopos/inmunología , Hepacivirus/metabolismo , Hepatitis C/sangre , Hepatitis C/inmunología , Hepatitis C/prevención & control , Anticuerpos contra la Hepatitis C/inmunología , Humanos , Inmunogenicidad Vacunal , Dominios Proteicos , Proteínas del Envoltorio Viral/química , Vacunas contra Hepatitis Viral/inmunología , Vacunas contra Hepatitis Viral/uso terapéutico
9.
Nat Biomed Eng ; 3(10): 842, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31455920

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

10.
Nat Biomed Eng ; 3(10): 806-816, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31332341

RESUMEN

Protein-based therapeutics can activate the adaptive immune system, leading to the production of neutralizing antibodies and the clearance of the treated cells mediated by cytotoxic T cells. Here, we show that the sequential use of immune-orthogonal orthologues of CRISPR-associated protein 9 (Cas9) and adeno-associated viruses (AAVs) evades adaptive immune responses and enables effective gene editing using repeated dosing. We compared total sequence similarities and predicted binding strengths to class-I and class-II major histocompatibility complex (MHC) proteins for 284 DNA-targeting and 84 RNA-targeting CRISPR effectors and 167 AAV VP1-capsid-protein orthologues. We predict the absence of cross-reactive immune responses for 79% of the DNA-targeting Cas orthologues-which we validated for three Cas9 orthologues in mice-yet we anticipate broad immune cross-reactivity among the AAV serotypes. We also show that efficacious in vivo gene editing is uncompromised when using multiple dosing with orthologues of AAVs and Cas9 in mice that were previously immunized against the AAV vector and the Cas9 cargo. Multiple dosing with protein orthologues may allow for sequential regimens of protein therapeutics that circumvent pre-existing immunity or induced immunity.


Asunto(s)
Sistemas CRISPR-Cas/genética , Cápside , Dependovirus/genética , Terapia Genética/métodos , Inmunidad Adaptativa , Animales , Edición Génica , Vectores Genéticos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ingeniería de Proteínas
11.
Physiol Plant ; 134(4): 598-608, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19000196

RESUMEN

The relative contribution of the high-affinity K(+) transporter AtHAK5 and the inward rectifier K(+) channel AtAKT1 to K(+) uptake in the high-affinity range of concentrations was studied in Arabidopsis thaliana ecotype Columbia (Col-0). The results obtained with wild-type lines, with T-DNA insertion in both genes and specific uptake inhibitors, show that AtHAK5 and AtAKT1 mediate the NH4+-sensitive and the Ba(2+)-sensitive components of uptake, respectively, and that they are the two major contributors to uptake in the high-affinity range of Rb(+) concentrations. Using Rb(+) as a K(+) analogue, it was shown that AtHAK5 mediates absorption at lower Rb(+) concentrations than AtAKT1 and depletes external Rb(+) to values around 1 muM. Factors such as the presence of K(+) or NH4+ during plant growth determine the relative contribution of each system. The presence of NH4+ in the growth solution inhibits the induction of AtHAK5 by K(+) starvation. In K(+)-starved plants grown without NH4+, both systems are operative, but when NH4+ is present in the growth solution, AtAKT1 is probably the only system mediating Rb(+) absorption, and the capacity of the roots to deplete Rb(+) is reduced.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Canales de Potasio/metabolismo , Potasio/metabolismo , Simportadores/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Compuestos de Bario/metabolismo , Compuestos de Bario/farmacología , Transporte Biológico , Cloruros/metabolismo , Cloruros/farmacología , ADN Bacteriano/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Mutagénesis Insercional , Mutación , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Canales de Potasio/genética , Antiportadores de Potasio-Hidrógeno , Compuestos de Amonio Cuaternario/metabolismo , ARN de Planta/genética , Rubidio/metabolismo , Rubidio/farmacología , Simportadores/genética
12.
Immunol Allergy Clin North Am ; 36(3): 559-68, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27401626

RESUMEN

Asthma is a heterogeneous disease that can be classified into different clinical endotypes, depending on the type of airway inflammation, clinical severity, and response to treatment. This article focuses on the eosinophilic endotype of asthma, which is defined by the central role that eosinophils play in the pathophysiology of the condition. It is characterized by elevated sputum and/or blood eosinophils on at least 2 occasions and by a significant response to treatments that suppress eosinophilia. Histopathologic demonstration of eosinophils in the airways provides the most direct diagnosis of eosinophilic asthma; but it is invasive, thus, impractical in clinical practice.


Asunto(s)
Asma/diagnóstico , Eosinófilos/patología , Eosinofilia Pulmonar/patología , Antiasmáticos/administración & dosificación , Antiasmáticos/efectos adversos , Antiasmáticos/uso terapéutico , Asma/epidemiología , Asma/etiología , Asma/terapia , Biomarcadores , Humanos , Recuento de Leucocitos , Prevalencia , Esputo/citología
13.
Sci Rep ; 6: 28941, 2016 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-27357749

RESUMEN

Abscisic acid (ABA) is a plant hormone that mediates abiotic stress tolerance and regulates growth and development. ABA binds to members of the PYL/RCAR ABA receptor family that initiate signal transduction inhibiting type 2C protein phosphatases. Although crosstalk between ABA and the hormone Jasmonic Acid (JA) has been shown, the molecular entities that mediate this interaction have yet to be fully elucidated. We report a link between ABA and JA signaling through a direct interaction of the ABA receptor PYL6 (RCAR9) with the basic helix-loop-helix transcription factor MYC2. PYL6 and MYC2 interact in yeast two hybrid assays and the interaction is enhanced in the presence of ABA. PYL6 and MYC2 interact in planta based on bimolecular fluorescence complementation and co-immunoprecipitation of the proteins. Furthermore, PYL6 was able to modify transcription driven by MYC2 using JAZ6 and JAZ8 DNA promoter elements in yeast one hybrid assays. Finally, pyl6 T-DNA mutant plants show an increased sensitivity to the addition of JA along with ABA in cotyledon expansion experiments. Overall, the present study identifies a direct mechanism for transcriptional modulation mediated by an ABA receptor different from the core ABA signaling pathway, and a putative mechanistic link connecting ABA and JA signaling pathways.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Ácidos Linoleicos/metabolismo , Transducción de Señal , Arabidopsis/genética , Péptidos y Proteínas de Señalización Intracelular , Unión Proteica , Mapeo de Interacción de Proteínas , Nicotiana/genética , Técnicas del Sistema de Dos Híbridos
15.
Elife ; 42015 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-26192964

RESUMEN

A central question is how specificity in cellular responses to the eukaryotic second messenger Ca(2+) is achieved. Plant guard cells, that form stomatal pores for gas exchange, provide a powerful system for in depth investigation of Ca(2+)-signaling specificity in plants. In intact guard cells, abscisic acid (ABA) enhances (primes) the Ca(2+)-sensitivity of downstream signaling events that result in activation of S-type anion channels during stomatal closure, providing a specificity mechanism in Ca(2+)-signaling. However, the underlying genetic and biochemical mechanisms remain unknown. Here we show impairment of ABA signal transduction in stomata of calcium-dependent protein kinase quadruple mutant plants. Interestingly, protein phosphatase 2Cs prevent non-specific Ca(2+)-signaling. Moreover, we demonstrate an unexpected interdependence of the Ca(2+)-dependent and Ca(2+)-independent ABA-signaling branches and the in planta requirement of simultaneous phosphorylation at two key phosphorylation sites in SLAC1. We identify novel mechanisms ensuring specificity and robustness within stomatal Ca(2+)-signaling on a cellular, genetic, and biochemical level.


Asunto(s)
Ácido Abscísico/metabolismo , Arabidopsis/fisiología , Calcio/metabolismo , Células Vegetales/fisiología , Estomas de Plantas/fisiología , Transducción de Señal , Arabidopsis/citología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Quinasa 2 de Adhesión Focal/genética , Quinasa 2 de Adhesión Focal/metabolismo , Eliminación de Gen , Proteínas de la Membrana/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Células Vegetales/metabolismo , Estomas de Plantas/metabolismo , Proteína Fosfatasa 2C , Procesamiento Proteico-Postraduccional
16.
J Plant Physiol ; 171(9): 688-95, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24810767

RESUMEN

Potassium (K(+)) is an essential macronutrient for plants. It is taken into the plant by the transport systems present in the plasma membranes of root epidermal and cortical cells. The identity of these systems and their regulation is beginning to be understood and the systems of K(+) transport in the model species Arabidopsis thaliana remain far better characterized than in any other plant species. Roots can activate different K(+) uptake systems to adapt to their environment, important to a sessile organism that needs to cope with a highly variable environment. The mechanisms of K(+) acquisition in the model species A. thaliana are the best characterized at the molecular level so far. According to the current model, non-selective channels are probably the main pathways for K(+) uptake at high concentrations (>10mM), while at intermediate concentrations (1mM), the inward rectifying channel AKT1 dominates K(+) uptake. Under lower concentrations of external K(+) (100µM), AKT1 channels, together with the high-affinity K(+) uptake system HAK5 contribute to K(+) acquisition, and at extremely low concentrations (<10µM) the only system capable of taking up K(+) is HAK5. Depending on the species the high-affinity system has been named HAK5 or HAK1, but in all cases it fulfills the same functions. The activation of these systems as a function of the K(+) availability is achieved by different mechanisms that include phosphorylation of AKT1 or induction of HAK5 transcription. Some of the characteristics of the systems for root K(+) uptake are shared by other organisms, whilst others are specific to plants. This indicates that some crucial properties of the ancestral of K(+) transport systems have been conserved through evolution while others have diverged among different kingdoms.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/metabolismo , Plantas/metabolismo , Canales de Potasio/metabolismo , Potasio/metabolismo , Arabidopsis/metabolismo , Transporte Biológico , Proteínas de Plantas/metabolismo
17.
Front Plant Sci ; 5: 430, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25228905

RESUMEN

Potassium (K(+)) is an essential macronutrient required for plant growth, development and high yield production of crops. Members of group I of the KT/HAK/KUP family of transporters, such as HAK5, are key components for K(+) acquisition by plant roots at low external K(+) concentrations. Certain abiotic stress conditions such as salinity or Cs(+)-polluted soils may jeopardize plant K(+) nutrition because HAK5-mediated K(+) transport is inhibited by Na(+) and Cs(+). Here, by screening in yeast a randomly-mutated collection of AtHAK5 transporters, a new mutation in AtHAK5 sequence is identified that greatly increases Na(+) tolerance. The single point mutation F130S, affecting an amino acid residue conserved in HAK5 transporters from several species, confers high salt tolerance, as well as Cs(+) tolerance. This mutation increases more than 100-fold the affinity of AtHAK5 for K(+) and reduces the K i values for Na(+) and Cs(+), suggesting that the F130 residue may contribute to the structure of the pore region involved in K(+) binding. In addition, this mutation increases the V max for K(+). All this changes occur without increasing the amount of the AtHAK5 protein in yeast and support the idea that this residue is contributing to shape the selectivity filter of the AtHAK5 transporter.

19.
Mol Plant ; 3(2): 326-33, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20028724

RESUMEN

K(+) uptake in the high-affinity range of concentrations and its components have been widely studied. In Arabidposis thaliana, the AtHAK5 transporter and the AtAKT1 channel have been shown to be the main transport proteins involved in this process. Here, we study the role of these two systems under two important stress conditions: low K(+) supply or the presence of salinity. T-DNA insertion lines disrupting AtHAK5 and AtAKT1 are employed for long-term experiments that allow physiological characterization of the mutant lines. We found that AtHAK5 is required for K(+) absorption necessary to sustain plant growth at low K(+) in the absence as well as in the presence of salinity. Salinity greatly reduced AtHAK5 transcript levels and promoted AtAKT1-mediated K(+) efflux, resulting in an important impairment of K(+) nutrition. Although having a limited capacity, AtHAK5 plays a major role for K(+) acquisition from low K(+) concentrations in the presence of salinity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Potasio/farmacología , Cloruro de Sodio/farmacología , Simportadores/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Reacción en Cadena de la Polimerasa , Potasio/metabolismo , Antiportadores de Potasio-Hidrógeno , Simportadores/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA