Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Biochem ; 93(1): 261-287, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38621236

RESUMEN

Activating mutations in leucine-rich repeat kinase 2 (LRRK2) represent the most common cause of monogenic Parkinson's disease. LRRK2 is a large multidomain protein kinase that phosphorylates a specific subset of the ∼65 human Rab GTPases, which are master regulators of the secretory and endocytic pathways. After phosphorylation by LRRK2, Rabs lose the capacity to bind cognate effector proteins and guanine nucleotide exchange factors. Moreover, the phosphorylated Rabs cannot interact with their cognate prenyl-binding retrieval proteins (also known as guanine nucleotide dissociation inhibitors) and, thus, they become trapped on membrane surfaces. Instead, they gain the capacity to bind phospho-Rab-specific effector proteins, such as RILPL1, with resulting pathological consequences. Rab proteins also act upstream of LRRK2 by controlling its activation and recruitment onto membranes. LRRK2 signaling is counteracted by the phosphoprotein phosphatase PPM1H, which selectively dephosphorylates phospho-Rab proteins. We present here our current understanding of the structure, biochemical properties, and cell biology of LRRK2 and its related paralog LRRK1 and discuss how this information guides the generation of LRRK2 inhibitors for the potential benefit of patients.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Enfermedad de Parkinson , Proteínas de Unión al GTP rab , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/química , Fosforilación , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/química , Animales , Transducción de Señal , Mutación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/química , Unión Proteica , Fosfoproteínas Fosfatasas/metabolismo , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/química
2.
Cell ; 174(5): 1049-1051, 2018 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-30142342

RESUMEN

The identification of inhibitors targeting regulatory subunits of serine/threonine PP1 phosphatases reported by Krzyzosiak et al. is a significant step in expanding the pharmacological regulation of phosphorylation beyond kinases. The selective inhibitor of the R15B phosphatase regulatory subunit, termed Raphin1, protects cells from stress and delays neurodegeneration in a mouse model of Huntington's disease.


Asunto(s)
Animales , Ratones , Fosforilación , Proteína Fosfatasa 1
3.
Proc Natl Acad Sci U S A ; 121(32): e2402206121, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39088390

RESUMEN

Activating leucine-rich repeat kinase 2 (LRRK2) mutations cause Parkinson's and phosphorylation of Rab10 by pathogenic LRRK2 blocks primary ciliogenesis in cultured cells. In the mouse brain, LRRK2 blockade of primary cilia is highly cell type specific: For example, cholinergic interneurons and astrocytes but not medium spiny neurons of the dorsal striatum lose primary cilia in LRRK2-pathway mutant mice. We show here that the cell type specificity of LRRK2-mediated cilia loss is also seen in human postmortem striatum from patients with LRRK2 pathway mutations and idiopathic Parkinson's. Single nucleus RNA sequencing shows that cilia loss in mouse cholinergic interneurons is accompanied by decreased glial-derived neurotrophic factor transcription, decreasing neuroprotection for dopamine neurons. Nevertheless, LRRK2 expression differences cannot explain the unique vulnerability of cholinergic neurons to LRRK2 kinase as much higher LRRK2 expression is seen in medium spiny neurons that have normal cilia. In parallel with decreased striatal dopaminergic neurite density, LRRK2 G2019S neurons show increased autism-linked CNTN5 adhesion protein expression; glial cells show significant loss of ferritin heavy chain. These data strongly suggest that loss of cilia in specific striatal cell types decreases neuroprotection for dopamine neurons in mice and human Parkinson's.


Asunto(s)
Cilios , Neuronas Dopaminérgicas , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Neuroprotección , Enfermedad de Parkinson , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Cilios/metabolismo , Animales , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Humanos , Ratones , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Neuroprotección/genética , Mutación , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Masculino
4.
Proc Natl Acad Sci U S A ; 121(7): e2312676121, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38324566

RESUMEN

To facilitate analysis and sharing of mass spectrometry (MS)-based proteomics data, we created online tools called CURTAIN (https://curtain.proteo.info) and CURTAIN-PTM (https://curtainptm.proteo.info) with an accompanying series of video tutorials (https://www.youtube.com/@CURTAIN-me6hl). These are designed to enable non-MS experts to interactively peruse volcano plots and deconvolute primary experimental data so that replicates can be visualized in bar charts or violin plots and exported in publication-ready format. They also allow assessment of overall experimental quality by correlation matrix and profile plot analysis. After making a selection of protein "hits", the user can analyze known domain structure, AlphaFold predicted structure, reported interactors, relative expression as well as disease links. CURTAIN-PTM permits analysis of all identified PTM sites on protein(s) of interest with selected databases. CURTAIN-PTM also links with the Kinase Library to predict upstream kinases that may phosphorylate sites of interest. We provide examples of the utility of CURTAIN and CURTAIN-PTM in analyzing how targeted degradation of the PPM1H Rab phosphatase that counteracts the Parkinson's LRRK2 kinase impacts cellular protein levels and phosphorylation sites. We also reanalyzed a ubiquitylation dataset, characterizing the PINK1-Parkin pathway activation in primary neurons, revealing data of interest not highlighted previously. CURTAIN and CURTAIN-PTM are free to use and open source, enabling researchers to share and maximize the impact of their proteomics data. We advocate that MS data published in volcano plot format be reported containing a shareable CURTAIN weblink, thereby allowing readers to better analyze and exploit the data.


Asunto(s)
Espectrometría de Masas , Proteómica , Programas Informáticos , Internet , Fosforilación , Procesamiento Proteico-Postraduccional , Proteínas/análisis , Proteómica/métodos
5.
Proc Natl Acad Sci U S A ; 120(20): e2219953120, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37155866

RESUMEN

The Golgi is a membrane-bound organelle that is essential for protein and lipid biosynthesis. It represents a central trafficking hub that sorts proteins and lipids to various destinations or for secretion from the cell. The Golgi has emerged as a docking platform for cellular signaling pathways including LRRK2 kinase whose deregulation leads to Parkinson disease. Golgi dysfunction is associated with a broad spectrum of diseases including cancer, neurodegeneration, and cardiovascular diseases. To allow the study of the Golgi at high resolution, we report a rapid Golgi immunoprecipitation technique (Golgi-IP) to isolate intact Golgi mini-stacks for subsequent analysis of their content. By fusing the Golgi-resident protein TMEM115 to three tandem HA epitopes (GolgiTAG), we purified the Golgi using Golgi-IP with minimal contamination from other compartments. We then established an analysis pipeline using liquid chromatography coupled with mass spectrometry to characterize the human Golgi proteome, metabolome, and lipidome. Subcellular proteomics confirmed known Golgi proteins and identified proteins not previously associated with the Golgi. Metabolite profiling established the human Golgi metabolome and revealed the enrichment of uridine-diphosphate (UDP) sugars and their derivatives, which is consistent with their roles in protein and lipid glycosylation. Furthermore, targeted metabolomics validated SLC35A2 as the subcellular transporter for UDP-hexose. Finally, lipidomics analysis showed that phospholipids including phosphatidylcholine, phosphatidylinositol, and phosphatidylserine are the most abundant Golgi lipids and that glycosphingolipids are enriched in this compartment. Altogether, our work establishes a comprehensive molecular map of the human Golgi and provides a powerful method to study the Golgi with high precision in health and disease.


Asunto(s)
Aparato de Golgi , Proteoma , Humanos , Aparato de Golgi/metabolismo , Cromatografía Liquida , Proteoma/metabolismo , Lípidos , Uridina Difosfato/metabolismo
6.
EMBO Rep ; 22(11): e52675, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34580980

RESUMEN

LRRK2 serine/threonine kinase is associated with inherited Parkinson's disease. LRRK2 phosphorylates a subset of Rab GTPases within their switch 2 motif to control their interactions with effectors. Recent work has shown that the metal-dependent protein phosphatase PPM1H counteracts LRRK2 by dephosphorylating Rabs. PPM1H is highly selective for LRRK2 phosphorylated Rabs, and closely related PPM1J exhibits no activity towards substrates such as Rab8a phosphorylated at Thr72 (pThr72). Here, we have identified the molecular determinant of PPM1H specificity for Rabs. The crystal structure of PPM1H reveals a structurally conserved phosphatase fold that strikingly has evolved a 110-residue flap domain adjacent to the active site. The flap domain distantly resembles tudor domains that interact with histones in the context of epigenetics. Cellular assays, crosslinking and 3-D modelling suggest that the flap domain encodes the docking motif for phosphorylated Rabs. Consistent with this hypothesis, a PPM1J chimaera with the PPM1H flap domain dephosphorylates pThr72 of Rab8a both in vitro and in cellular assays. Therefore, PPM1H has acquired a Rab-specific interaction domain within a conserved phosphatase fold.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Proteínas de Unión al GTP rab , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
7.
Bioorg Med Chem Lett ; 94: 129449, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37591317

RESUMEN

The discovery of disease-modifying therapies for Parkinson's Disease (PD) represents a critical need in neurodegenerative medicine. Genetic mutations in leucine-rich repeat kinase 2 (LRRK2) are risk factors for the development of PD, and some of these mutations have been linked to increased LRRK2 kinase activity and neuronal toxicity in cellular and animal models. Furthermore, LRRK2 function as a scaffolding protein in several pathways has been implicated as a plausible mechanism underlying neurodegeneration caused by LRRK2 mutations. Given that both the kinase activity and scaffolding function of LRRK2 have been linked to neurodegeneration, we developed proteolysis-targeting chimeras (PROTACs) targeting LRRK2. The degrader molecule JH-XII-03-02 (6) displayed high potency and remarkable selectivity for LRKK2 when assessed in a of 468 panel kinases and serves the dual purpose of eliminating both the kinase activity as well as the scaffolding function of LRRK2.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Enfermedad de Parkinson , Animales , Modelos Animales , Mutación , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/genética , Fosforilación , Quimera Dirigida a la Proteólisis , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/antagonistas & inhibidores
8.
Nature ; 550(7677): 534-538, 2017 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-29045385

RESUMEN

The ubiquitin system regulates essential cellular processes in eukaryotes. Ubiquitin is ligated to substrate proteins as monomers or chains and the topology of ubiquitin modifications regulates substrate interactions with specific proteins. Thus ubiquitination directs a variety of substrate fates including proteasomal degradation. Deubiquitinase enzymes cleave ubiquitin from substrates and are implicated in disease; for example, ubiquitin-specific protease-7 (USP7) regulates stability of the p53 tumour suppressor and other proteins critical for tumour cell survival. However, developing selective deubiquitinase inhibitors has been challenging and no co-crystal structures have been solved with small-molecule inhibitors. Here, using nuclear magnetic resonance-based screening and structure-based design, we describe the development of selective USP7 inhibitors GNE-6640 and GNE-6776. These compounds induce tumour cell death and enhance cytotoxicity with chemotherapeutic agents and targeted compounds, including PIM kinase inhibitors. Structural studies reveal that GNE-6640 and GNE-6776 non-covalently target USP7 12 Å distant from the catalytic cysteine. The compounds attenuate ubiquitin binding and thus inhibit USP7 deubiquitinase activity. GNE-6640 and GNE-6776 interact with acidic residues that mediate hydrogen-bond interactions with the ubiquitin Lys48 side chain, suggesting that USP7 preferentially interacts with and cleaves ubiquitin moieties that have free Lys48 side chains. We investigated this idea by engineering di-ubiquitin chains containing differential proximal and distal isotopic labels and measuring USP7 binding by nuclear magnetic resonance. This preferential binding protracted the depolymerization kinetics of Lys48-linked ubiquitin chains relative to Lys63-linked chains. In summary, engineering compounds that inhibit USP7 activity by attenuating ubiquitin binding suggests opportunities for developing other deubiquitinase inhibitors and may be a strategy more broadly applicable to inhibiting proteins that require ubiquitin binding for full functional activity.


Asunto(s)
Aminopiridinas/química , Aminopiridinas/farmacología , Indazoles/química , Indazoles/farmacología , Fenoles/química , Fenoles/farmacología , Piridinas/química , Piridinas/farmacología , Peptidasa Específica de Ubiquitina 7/antagonistas & inhibidores , Ubiquitina/metabolismo , Animales , Unión Competitiva , Línea Celular Tumoral , Sinergismo Farmacológico , Femenino , Humanos , Ratones , Ratones SCID , Modelos Moleculares , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Neoplasias/patología , Unión Proteica , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteínas Proto-Oncogénicas c-pim-1/antagonistas & inhibidores , Especificidad por Sustrato , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina/química , Peptidasa Específica de Ubiquitina 7/química , Peptidasa Específica de Ubiquitina 7/deficiencia , Peptidasa Específica de Ubiquitina 7/metabolismo
9.
Biochem J ; 479(17): 1759-1783, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-35950872

RESUMEN

Mutations enhancing the kinase activity of leucine-rich repeat kinase-2 (LRRK2) cause Parkinson's disease (PD) and therapies that reduce LRRK2 kinase activity are being tested in clinical trials. Numerous rare variants of unknown clinical significance have been reported, but how the vast majority impact on LRRK2 function is unknown. Here, we investigate 100 LRRK2 variants linked to PD, including previously described pathogenic mutations. We identify 23 LRRK2 variants that robustly stimulate kinase activity, including variants within the N-terminal non-catalytic regions (ARM (E334K, A419V), ANK (R767H), LRR (R1067Q, R1325Q)), as well as variants predicted to destabilize the ROC:CORB interface (ROC (A1442P, V1447M), CORA (R1628P) CORB (S1761R, L1795F)) and COR:COR dimer interface (CORB (R1728H/L)). Most activating variants decrease LRRK2 biomarker site phosphorylation (pSer935/pSer955/pSer973), consistent with the notion that the active kinase conformation blocks their phosphorylation. We conclude that the impact of variants on kinase activity is best evaluated by deploying a cellular assay of LRRK2-dependent Rab10 substrate phosphorylation, compared with a biochemical kinase assay, as only a minority of activating variants (CORB (Y1699C, R1728H/L, S1761R) and kinase (G2019S, I2020T, T2031S)), enhance in vitro kinase activity of immunoprecipitated LRRK2. Twelve variants including several that activate LRRK2 and have been linked to PD, suppress microtubule association in the presence of a Type I kinase inhibitor (ARM (M712V), LRR (R1320S), ROC (A1442P, K1468E, S1508R), CORA (A1589S), CORB (Y1699C, R1728H/L) and WD40 (R2143M, S2350I, G2385R)). Our findings will stimulate work to better understand the mechanisms by which variants impact biology and provide rationale for variant carrier inclusion or exclusion in ongoing and future LRRK2 inhibitor clinical trials.


Asunto(s)
Enfermedad de Parkinson , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Microtúbulos/metabolismo , Mutación , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Fosforilación , Unión Proteica
10.
Biochem J ; 479(18): 1941-1965, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36040231

RESUMEN

Leucine-rich-repeat-kinase 1 (LRRK1) and its homolog LRRK2 are multidomain kinases possessing a ROC-CORA-CORB containing GTPase domain and phosphorylate distinct Rab proteins. LRRK1 loss of function mutations cause the bone disorder osteosclerotic metaphyseal dysplasia, whereas LRRK2 missense mutations that enhance kinase activity cause Parkinson's disease. Previous work suggested that LRRK1 but not LRRK2, is activated via a Protein Kinase C (PKC)-dependent mechanism. Here we demonstrate that phosphorylation and activation of LRRK1 in HEK293 cells is blocked by PKC inhibitors including LXS-196 (Darovasertib), a compound that has entered clinical trials. We show multiple PKC isoforms phosphorylate and activate recombinant LRRK1 in a manner reversed by phosphatase treatment. PKCα unexpectedly does not activate LRRK1 by phosphorylating the kinase domain, but instead phosphorylates a cluster of conserved residues (Ser1064, Ser1074 and Thr1075) located within a region of the CORB domain of the GTPase domain. These residues are positioned at the equivalent region of the LRRK2 DK helix reported to stabilize the kinase domain αC-helix in the active conformation. Thr1075 represents an optimal PKC site phosphorylation motif and its mutation to Ala, blocked PKC-mediated activation of LRRK1. A triple Glu mutation of Ser1064/Ser1074/Thr1075 to mimic phosphorylation, enhanced LRRK1 kinase activity ∼3-fold. From analysis of available structures, we postulate that phosphorylation of Ser1064, Ser1074 and Thr1075 activates LRRK1 by promoting interaction and stabilization of the αC-helix on the kinase domain. This study provides new fundamental insights into the mechanism controlling LRRK1 activity and reveals a novel unexpected activation mechanism.


Asunto(s)
GTP Fosfohidrolasas , Proteínas Serina-Treonina Quinasas , Cordyceps , GTP Fosfohidrolasas/metabolismo , Células HEK293 , Humanos , Leucina/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Mutación , Monoéster Fosfórico Hidrolasas/metabolismo , Fosforilación , Isoformas de Proteínas/metabolismo , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Proteína Quinasa C-alfa/metabolismo , Inhibidores de Proteínas Quinasas , Proteínas Serina-Treonina Quinasas/genética
11.
Biochem J ; 479(5): 661-675, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35179207

RESUMEN

The BTB-Kelch protein KLHL3 is a Cullin3-dependent E3 ligase that mediates the ubiquitin-dependent degradation of kinases WNK1-4 to control blood pressure and cell volume. A crystal structure of KLHL3 has defined its binding to an acidic degron motif containing a PXXP sequence that is strictly conserved in WNK1, WNK2 and WNK4. Mutations in the second proline abrograte the interaction causing the hypertension syndrome pseudohypoaldosteronism type II. WNK3 shows a diverged degron motif containing four amino acid substitutions that remove the PXXP motif raising questions as to the mechanism of its binding. To understand this atypical interaction, we determined the crystal structure of the KLHL3 Kelch domain in complex with a WNK3 peptide. The electron density enabled the complete 11-mer WNK-family degron motif to be traced for the first time revealing several conserved features not captured in previous work, including additional salt bridge and hydrogen bond interactions. Overall, the WNK3 peptide adopted a conserved binding pose except for a subtle shift to accommodate bulkier amino acid substitutions at the binding interface. At the centre, the second proline was substituted by WNK3 Thr541, providing a unique phosphorylatable residue among the WNK-family degrons. Fluorescence polarisation and structural modelling experiments revealed that its phosphorylation would abrogate the KLHL3 interaction similarly to hypertension-causing mutations. Together, these data reveal how the KLHL3 Kelch domain can accommodate the binding of multiple WNK isoforms and highlight a potential regulatory mechanism for the recruitment of WNK3.


Asunto(s)
Hipertensión , Ubiquitina-Proteína Ligasas , Proteínas Adaptadoras Transductoras de Señales/genética , Humanos , Proteínas de Microfilamentos/genética , Fosforilación , Prolina , Proteínas Serina-Treonina Quinasas/genética , Ubiquitina
12.
J Am Chem Soc ; 144(37): 16930-16952, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-36007011

RESUMEN

Leucine-rich repeat kinase 2 (LRRK2) is one of the most promising targets for Parkinson's disease. LRRK2-targeting strategies have primarily focused on type 1 kinase inhibitors, which, however, have limitations as the inhibited protein can interfere with natural mechanisms, which could lead to undesirable side effects. Herein, we report the development of LRRK2 proteolysis targeting chimeras (PROTACs), culminating in the discovery of degrader XL01126, as an alternative LRRK2-targeting strategy. Initial designs and screens of PROTACs based on ligands for E3 ligases von Hippel-Lindau (VHL), Cereblon (CRBN), and cellular inhibitor of apoptosis (cIAP) identified the best degraders containing thioether-conjugated VHL ligand VH101. A second round of medicinal chemistry exploration led to qualifying XL01126 as a fast and potent degrader of LRRK2 in multiple cell lines, with DC50 values within 15-72 nM, Dmax values ranging from 82 to 90%, and degradation half-lives spanning from 0.6 to 2.4 h. XL01126 exhibits high cell permeability and forms a positively cooperative ternary complex with VHL and LRRK2 (α = 5.7), which compensates for a substantial loss of binary binding affinities to VHL and LRRK2, underscoring its strong degradation performance in cells. Remarkably, XL01126 is orally bioavailable (F = 15%) and can penetrate the blood-brain barrier after either oral or parenteral dosing in mice. Taken together, these experiments qualify XL01126 as a suitable degrader probe to study the noncatalytic and scaffolding functions of LRRK2 in vitro and in vivo and offer an attractive starting point for future drug development.


Asunto(s)
Barrera Hematoencefálica , Ubiquitina-Proteína Ligasas , Animales , Ratones , Barrera Hematoencefálica/metabolismo , Leucina , Ligandos , Inhibidores de Proteínas Quinasas/farmacología , Proteolisis , Sulfuros , Ubiquitina-Proteína Ligasas/metabolismo
13.
EMBO J ; 37(1): 1-18, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29212815

RESUMEN

Parkinson's disease predisposing LRRK2 kinase phosphorylates a group of Rab GTPase proteins including Rab29, within the effector-binding switch II motif. Previous work indicated that Rab29, located within the PARK16 locus mutated in Parkinson's patients, operates in a common pathway with LRRK2. Here, we show that Rab29 recruits LRRK2 to the trans-Golgi network and greatly stimulates its kinase activity. Pathogenic LRRK2 R1441G/C and Y1699C mutants that promote GTP binding are more readily recruited to the Golgi and activated by Rab29 than wild-type LRRK2. We identify conserved residues within the LRRK2 ankyrin domain that are required for Rab29-mediated Golgi recruitment and kinase activation. Consistent with these findings, knockout of Rab29 in A549 cells reduces endogenous LRRK2-mediated phosphorylation of Rab10. We show that mutations that prevent LRRK2 from interacting with either Rab29 or GTP strikingly inhibit phosphorylation of a cluster of highly studied biomarker phosphorylation sites (Ser910, Ser935, Ser955 and Ser973). Our data reveal that Rab29 is a master regulator of LRRK2, controlling its activation, localization, and potentially biomarker phosphorylation.


Asunto(s)
Fibroblastos/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Proteínas de Unión al GTP rab1/metabolismo , Animales , Sistemas CRISPR-Cas , Células Cultivadas , Fibroblastos/citología , Células HEK293 , Células HeLa , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Ratones , Ratones Endogámicos C57BL , Enfermedad de Parkinson , Fosforilación , Transducción de Señal , Proteínas de Unión al GTP rab , Proteínas de Unión al GTP rab1/antagonistas & inhibidores , Proteínas de Unión al GTP rab1/genética
14.
EMBO J ; 37(12)2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29789389

RESUMEN

Mutations in the leucine-rich repeat kinase 2 (LRRK2) are associated with Parkinson's disease, chronic inflammation and mycobacterial infections. Although there is evidence supporting the idea that LRRK2 has an immune function, the cellular function of this kinase is still largely unknown. By using genetic, pharmacological and proteomics approaches, we show that LRRK2 kinase activity negatively regulates phagosome maturation via the recruitment of the Class III phosphatidylinositol-3 kinase complex and Rubicon to the phagosome in macrophages. Moreover, inhibition of LRRK2 kinase activity in mouse and human macrophages enhanced Mycobacterium tuberculosis phagosome maturation and mycobacterial control independently of autophagy. In vivo, LRRK2 deficiency in mice resulted in a significant decrease in M. tuberculosis burdens early during the infection. Collectively, our findings provide a molecular mechanism explaining genetic evidence linking LRRK2 to mycobacterial diseases and establish an LRRK2-dependent cellular pathway that controls M. tuberculosis replication by regulating phagosome maturation.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/inmunología , Macrófagos/inmunología , Mycobacterium tuberculosis/inmunología , Fagosomas/inmunología , Tuberculosis/inmunología , Animales , Proteínas Relacionadas con la Autofagia , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/inmunología , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Macrófagos/microbiología , Ratones , Ratones Noqueados , Fagosomas/genética , Fagosomas/microbiología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/inmunología , Tuberculosis/genética
15.
Nat Rev Mol Cell Biol ; 11(1): 9-22, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20027184

RESUMEN

The AGC kinase subfamily of protein kinases contains 60 members, including PKA, PKG and PKC. The family comprises some intensely examined protein kinases (such as Akt, S6K, RSK, MSK, PDK1 and GRK) as well as many less well-studied enzymes (such as SGK, NDR, LATS, CRIK, SGK494, PRKX, PRKY and MAST). Research has shed new light onto the architecture and regulatory mechanisms of these kinases. In addition, AGC kinases mediate diverse and important cellular functions, and their mutation and/or dysregulation contributes to the pathogenesis of many human diseases, including cancer and diabetes.


Asunto(s)
Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/fisiología , Animales , Diabetes Mellitus/enzimología , Activación Enzimática , Humanos , Neoplasias/enzimología
16.
Mol Cell Proteomics ; 19(9): 1546-1560, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32601174

RESUMEN

Pathogenic mutations in the Leucine-rich repeat kinase 2 (LRRK2) are the predominant genetic cause of Parkinson's disease (PD). They increase its activity, resulting in augmented Rab10-Thr73 phosphorylation and conversely, LRRK2 inhibition decreases pRab10 levels. Currently, there is no assay to quantify pRab10 levels for drug target engagement or patient stratification. To meet this challenge, we developed an high accuracy and sensitivity targeted mass spectrometry (MS)-based assay for determining Rab10-Thr73 phosphorylation stoichiometry in human samples. It uses synthetic stable isotope-labeled (SIL) analogues for both phosphorylated and nonphosphorylated tryptic peptides surrounding Rab10-Thr73 to directly derive the percentage of Rab10 phosphorylation from attomole amounts of the endogenous phosphopeptide. The SIL and the endogenous phosphopeptides are separately admitted into an Orbitrap analyzer with the appropriate injection times. We test the reproducibility of our assay by determining Rab10-Thr73 phosphorylation stoichiometry in neutrophils of LRRK2 mutation carriers before and after LRRK2 inhibition. Compared with healthy controls, the PD predisposing mutation carriers LRRK2 G2019S and VPS35 D620N display 1.9-fold and 3.7-fold increased pRab10 levels, respectively. Our generic MS-based assay further establishes the relevance of pRab10 as a prognostic PD marker and is a powerful tool for determining LRRK2 inhibitor efficacy and for stratifying PD patients for LRRK2 inhibitor treatment.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/antagonistas & inhibidores , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/sangre , Neutrófilos/metabolismo , Enfermedad de Parkinson/sangre , Inhibidores de Proteínas Quinasas/farmacología , Proteoma/metabolismo , Proteínas de Unión al GTP rab/sangre , Cromatografía Liquida , Humanos , Inmunoprecipitación , Marcaje Isotópico , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Mutación , Enfermedad de Parkinson/genética , Fosforilación , Proteoma/genética , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem
17.
Biochem J ; 478(19): 3555-3573, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34515301

RESUMEN

Much effort has been devoted to the development of selective inhibitors of the LRRK2 as a potential treatment for LRRK2 driven Parkinson's disease. In this study, we first compare the properties of Type I (GSK3357679A and MLi-2) and Type II (GZD-824, Rebastinib and Ponatinib) kinase inhibitors that bind to the closed or open conformations of the LRRK2 kinase domain, respectively. We show that Type I and Type II inhibitors suppress phosphorylation of Rab10 and Rab12, key physiological substrates of LRRK2 and also promote mitophagy, a process suppressed by LRRK2. Type II inhibitors also display higher potency towards wild-type LRRK2 compared with pathogenic mutants. Unexpectedly, we find that Type II inhibitors, in contrast with Type I compounds, fail to induce dephosphorylation of a set of well-studied LRRK2 biomarker phosphorylation sites at the N-terminal region of LRRK2, including Ser935. These findings emphasize that the biomarker phosphorylation sites on LRRK2 are likely reporting on the open vs closed conformation of LRRK2 kinase and that only inhibitors which stabilize the closed conformation induce dephosphorylation of these biomarker sites. Finally, we demonstrate that the LRRK2[A2016T] mutant which is resistant to MLi-2 Type 1 inhibitor, also induces resistance to GZD-824 and Rebastinib suggesting this mutation could be exploited to distinguish off target effects of Type II inhibitors. Our observations provide a framework of knowledge to aid with the development of more selective Type II LRRK2 inhibitors.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/antagonistas & inhibidores , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Mitofagia/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Benzamidas/farmacología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Técnicas de Inactivación de Genes , Células HEK293 , Células HeLa , Humanos , Imidazoles/farmacología , Indazoles/farmacología , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Ratones , Ratones Endogámicos C57BL , Mitofagia/genética , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Enfermedad de Parkinson , Fosforilación/efectos de los fármacos , Fosforilación/genética , Pirazoles/farmacología , Piridazinas/farmacología , Piridinas/farmacología , Pirimidinas/farmacología , Quinolinas/farmacología , Transducción de Señal/genética , Transfección
18.
Biochem J ; 478(2): 299-326, 2021 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33367571

RESUMEN

Mutations that increase the protein kinase activity of LRRK2 are one of the most common causes of familial Parkinson's disease. LRRK2 phosphorylates a subset of Rab GTPases within their Switch-II motif, impacting interaction with effectors. We describe and validate a new, multiplexed targeted mass spectrometry assay to quantify endogenous levels of LRRK2-phosphorylated Rab substrates (Rab1, Rab3, Rab8, Rab10, Rab35 and Rab43) as well as total levels of Rabs, LRRK2 and LRRK2-phosphorylated at the Ser910 and Ser935 biomarker sites. Exploiting this assay, we quantify for the first time the relative levels of each of the pRab proteins in different cells (mouse embryonic fibroblasts, human neutrophils) and mouse tissues (brain, kidney, lung and spleen). We define how these components are impacted by Parkinson's pathogenic mutations (LRRK2[R1441C] and VPS35[D620N]) and LRRK2 inhibitors. We find that the VPS35[D620N], but not LRRK2[R1441C] mutation, enhances Rab1 phosphorylation in a manner blocked by administration of an LRRK2 inhibitor, providing the first evidence that endogenous Rab1 is a physiological substrate for LRRK2. We exploit this assay to demonstrate that in Parkinson's patients with VPS35[D620N] mutations, phosphorylation of multiple Rab proteins (Rab1, Rab3, Rab8, Rab10 and Rab43) is elevated. We highlight the benefits of this assay over immunoblotting approaches currently deployed to assess LRRK2 Rab signalling pathway.


Asunto(s)
Biomarcadores/análisis , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Espectrometría de Masas en Tándem/métodos , Proteínas de Unión al GTP rab/metabolismo , Animales , Biomarcadores/metabolismo , Fibroblastos/metabolismo , Humanos , Inmunoprecipitación/métodos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/antagonistas & inhibidores , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Límite de Detección , Ratones Mutantes , Mutación , Enfermedad de Parkinson/genética , Fosforilación , Serina/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
19.
Biochem J ; 478(3): 553-578, 2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33459343

RESUMEN

Autosomal dominant mutations in LRRK2 that enhance kinase activity cause Parkinson's disease. LRRK2 phosphorylates a subset of Rab GTPases including Rab8A and Rab10 within its effector binding motif. Here, we explore whether LRRK1, a less studied homolog of LRRK2 that regulates growth factor receptor trafficking and osteoclast biology might also phosphorylate Rab proteins. Using mass spectrometry, we found that in LRRK1 knock-out cells, phosphorylation of Rab7A at Ser72 was most impacted. This residue lies at the equivalent site targeted by LRRK2 on Rab8A and Rab10. Accordingly, recombinant LRRK1 efficiently phosphorylated Rab7A at Ser72, but not Rab8A or Rab10. Employing a novel phospho-specific antibody, we found that phorbol ester stimulation of mouse embryonic fibroblasts markedly enhanced phosphorylation of Rab7A at Ser72 via LRRK1. We identify two LRRK1 mutations (K746G and I1412T), equivalent to the LRRK2 R1441G and I2020T Parkinson's mutations, that enhance LRRK1 mediated phosphorylation of Rab7A. We demonstrate that two regulators of LRRK2 namely Rab29 and VPS35[D620N], do not influence LRRK1. Widely used LRRK2 inhibitors do not inhibit LRRK1, but we identify a promiscuous inhibitor termed GZD-824 that inhibits both LRRK1 and LRRK2. The PPM1H Rab phosphatase when overexpressed dephosphorylates Rab7A. Finally, the interaction of Rab7A with its effector RILP is not affected by LRRK1 phosphorylation and we observe that maximal stimulation of the TBK1 or PINK1 pathway does not elevate Rab7A phosphorylation. Altogether, these findings reinforce the idea that the LRRK enzymes have evolved as major regulators of Rab biology with distinct substrate specificity.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Fibroblastos , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/antagonistas & inhibidores , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/inmunología , Ratones , Ratones Noqueados , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Fosfoserina/metabolismo , Proteínas Quinasas/deficiencia , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/inmunología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Organismos Libres de Patógenos Específicos , Acetato de Tetradecanoilforbol/farmacología
20.
Proc Natl Acad Sci U S A ; 116(5): 1579-1584, 2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30635421

RESUMEN

Leucine-rich repeat kinase 2 (LRRK2) is a large multidomain protein with both a Ras of complex (ROC) domain and a kinase domain (KD) and, therefore, exhibits both GTPase and kinase activities. Human genetics studies have linked LRRK2 as a major genetic contributor to familial and sporadic Parkinson's disease (PD), a neurodegenerative movement disorder that inflicts millions worldwide. The C-terminal region of LRRK2 is a Trp-Asp-40 (WD40) domain with poorly defined biological functions but has been implicated in microtubule interaction. Here, we present the crystal structure of the WD40 domain of human LRRK2 at 2.6-Å resolution, which reveals a seven-bladed WD40 fold. The structure displays a dimeric assembly in the crystal, which we further confirm by measurements in solution. We find that structure-based and PD-associated disease mutations in the WD40 domain including the common G2385R polymorphism mainly compromise dimer formation. Assessment of full-length LRRK2 kinase activity by measuring phosphorylation of Rab10, a member of the family of Rab GTPases known to be important kinase substrates of LRRK2, shows enhancement of kinase activity by several dimerization-defective mutants including G2385R, although dimerization impairment does not always result in kinase activation. Furthermore, mapping of phylogenetically conserved residues onto the WD40 domain structure reveals surface patches that may be important for additional functions of LRRK2. Collectively, our analyses provide insights for understanding the structures and functions of LRRK2 and suggest the potential utility of LRRK2 kinase inhibitors in treating PD patients with WD40 domain mutations.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/química , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Repeticiones WD40/genética , Cristalización/métodos , Cristalografía por Rayos X , Dimerización , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Mutación/genética , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Inhibidores de Proteínas Quinasas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA