Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Transgenic Res ; 24(3): 447-61, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25417184

RESUMEN

Tubers of potato (Solanum tuberosum L. cv. Estima) genetically modified to reduce polyphenol oxidase (PPO) activity and enzymatic discolouration were assessed for changes in the metabolome using Liquid Chromatography-Mass Spectrometry (LC-MS) and Gas Chromatography (GC)-MS. Metabolome changes induced over a 48 hour (h) period by tuber wounding (sliced transverse sections) were also assessed using two PPO antisense lines (asPPO) and a wild-type (WT) control. Data were analysed using Principal Components Analysis and Analysis of Variance to assess differences between genotypes and temporal changes post-tuber wounding (by slicing). The levels of 15 metabolites (out of a total of 134 that were detected) differed between the WT and asPPO lines in mature tubers at harvest. A considerably higher number (63) of these metabolites changed significantly over a 48 h period following tuber wounding. For individual metabolites the magnitude of the differences between the WT and asPPO lines at harvest were small compared with the impacts of tuber wounding on metabolite levels. Some of the observed metabolite changes are explicable in terms of pathways known to be affected by wound responses. Whilst some statistically significant interactions (11 metabolites) were observed between line and time after wounding, very few profiles were consistent when comparing the WT with both asPPO lines, and the underlying metabolites appeared to be random in terms of the pathways they occupy. Overall, mechanical damage to tubers has a considerably greater impact on the metabolite profile than any potential unintended effects resulting from the down-regulation of PPO gene expression.


Asunto(s)
Catecol Oxidasa/metabolismo , Tubérculos de la Planta/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Análisis de Varianza , Catecol Oxidasa/genética , Cromatografía Liquida/métodos , Color , Regulación hacia Abajo , Cromatografía de Gases y Espectrometría de Masas , Regulación de la Expresión Génica de las Plantas , Metaboloma , Oligodesoxirribonucleótidos Antisentido , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubérculos de la Planta/genética , Plantas Modificadas Genéticamente
2.
Antioxidants (Basel) ; 9(9)2020 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-32858836

RESUMEN

Plants are a reservoir of high-value molecules with underexplored biomedical applications. With the aim of identifying novel health-promoting attributes in underexplored natural sources, we scrutinized the diversity of (poly)phenols present within the berries of selected germplasm from cultivated, wild, and underutilized Rubus species. Our strategy combined the application of metabolomics, statistical analysis, and evaluation of (poly)phenols' bioactivity using a yeast-based discovery platform. We identified species as sources of (poly)phenols interfering with pathological processes associated with redox-related diseases, particularly, amyotrophic lateral sclerosis, cancer, and inflammation. In silico prediction of putative bioactives suggested cyanidin-hexoside as an anti-inflammatory molecule which was validated in yeast and mammalian cells. Moreover, cellular assays revealed that the cyanidin moiety was responsible for the anti-inflammatory properties of cyanidin-hexoside. Our findings unveiled novel (poly)phenolic bioactivities and illustrated the power of our integrative approach for the identification of dietary (poly)phenols with potential biomedical applications.

3.
Food Chem ; 200: 263-73, 2016 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-26830588

RESUMEN

Metabolite profiling (liquid chromatography-mass spectrometry (LC-MS) and gas chromatography (GC-MS)) was used to assess the impact of light on the composition of transgenic potato (Solanum tuberosum L. cv. Desirée) with reduced glycoalkaloid content via the down-regulation of the SGT1 gene. Transgenic tubers exhibited an almost complete knock-out of α-solanine production and light had little impact on its accumulation. Levels of α-chaconine increased significantly in the peel of both the control and transgenic lines when exposed to light, particularly in the transgenic line. Major differences in metabolite profiles existed between outer and inner tuber tissues, and between light and dark-treated tubers. Many of the light-induced changes are explicable in terms of pathways known to be affected by stress responses. The impact of transgenesis on profiles was much less than that of tissue type or light and most differences were explicable in terms of the modification to the glycoalkaloid pathway.


Asunto(s)
Tubérculos de la Planta/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Alcaloides Solanáceos/biosíntesis , Solanum tuberosum/metabolismo , Clorofila/análisis , Cromatografía Liquida , Cromatografía de Gases y Espectrometría de Masas , Luz , Espectrometría de Masas , Solanina/análogos & derivados , Solanina/análisis , Solanum tuberosum/genética
4.
Food Chem ; 187: 437-43, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25977048

RESUMEN

Metabolite profiling has been used to assess the potential for unintended composition changes in potato (Solanum tuberosum L. cv. Desirée) tubers, which have been genetically modified (GM) to reduce glycoalkaloid content, via the independent down-regulation of three genes SGT1, SGT2 and SGT3 known to be involved in glycoalkaloid biosynthesis. Differences between the three groups of antisense lines and control lines were assessed using liquid chromatography-mass spectrometry (LC-MS) and gas chromatography (GC)-MS, and data analysed using principal component analysis and analysis of variance. Compared with the wild-type (WT) control, LC-MS revealed not only the expected changes in specific glycoalkaloid levels in the GM lines, but also significant changes in several other metabolites, some of which were explicable in terms of known pathways. Analysis of polar and non-polar metabolites by GC-MS revealed other significant (unintended) differences between SGT lines and the WT, but also between the WT control and other control lines used.


Asunto(s)
Glicosiltransferasas/genética , Metaboloma , Plantas Modificadas Genéticamente/metabolismo , Alcaloides Solanáceos/análisis , Solanum tuberosum/metabolismo , Cromatografía de Gases , Regulación hacia Abajo , Genotipo , Espectrometría de Masas , Metaboloma/genética , Tubérculos de la Planta/química , Tubérculos de la Planta/enzimología , Tubérculos de la Planta/genética , Plantas Modificadas Genéticamente/química , Plantas Modificadas Genéticamente/enzimología , Alcaloides Solanáceos/biosíntesis , Solanum tuberosum/química , Solanum tuberosum/enzimología , Solanum tuberosum/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA