RESUMEN
Depressive Disorder (DD) is a leading cause of disability worldwide. Passive tools for screening the symptoms of DD are essential in monitoring and limiting the spread of the disease. From an alternative perspective, individuals' kinetic expression and activities, including smartphone interaction, reflect their mental status. Such widely available data in everyday life form a promising source of information on keystroke dynamics and their characteristics. This work explores how keystroke dynamics derived from touchscreen typing patterns have revealed the diagnosis of mental disorders, particularly depressive disorders. Different deep learning approaches were established to detect patients' depressive tendencies denoted by the self-reported Patient Health Questionnaire-9 (PHQ-9) score based on keystroke digital biomarkers. In particular, Convolutional Neural Networks (CNN), Long-Short-Term-Memory (LSTM), and CNN-LSTM models were examined and compared. The keystroke sequences are captured unobtrusively during routine interaction with touchscreen smartphones in a non-clinical setting. This study used 23,264 typing sessions provided by 10 DD patients and 14 healthy controls (HC). The proposed approach was investigated under two keystroke feature combinations and validated utilizing a leave-one-subject-out (LOSO) cross-validation scheme. The best-performing LSTM-with-hold-time (LSTM-HT) model achieved an Area Under Curve (AUC) of 0.86 with the correlated probabilities for subjects' status [95% confidence interval (CI):0.66-1.00, sensitivity/specificity (SE/SP) of 0.8/0.93].Clinical relevance- The findings of this research have the potential to contribute to improving digital tools for objectively screening mental disorders in the wild. Moreover, they would potentially provide the users and their attending psychiatrists with information regarding the evolution of their mental health.
Asunto(s)
Trastorno Depresivo , Teléfono Inteligente , Humanos , Sensibilidad y Especificidad , Redes Neurales de la Computación , Autoinforme , Trastorno Depresivo/diagnósticoRESUMEN
Neurologists nowadays no longer view neurodegenerative diseases, like Parkinson's and Alzheimer's disease, as single entities, but rather as a spectrum of multifaceted symptoms with heterogeneous progression courses and treatment responses. The definition of the naturalistic behavioral repertoire of early neurodegenerative manifestations is still elusive, impeding early diagnosis and intervention. Central to this view is the role of artificial intelligence (AI) in reinforcing the depth of phenotypic information, thereby supporting the paradigm shift to precision medicine and personalized healthcare. This suggestion advocates the definition of disease subtypes in a new biomarker-supported nosology framework, yet without empirical consensus on standardization, reliability and interpretability. Although the well-defined neurodegenerative processes, linked to a triad of motor and non-motor preclinical symptoms, are detected by clinical intuition, we undertake an unbiased data-driven approach to identify different patterns of neuropathology distribution based on the naturalistic behavior data inherent to populations in-the-wild. We appraise the role of remote technologies in the definition of digital phenotyping specific to brain-, body- and social-level neurodegenerative subtle symptoms, emphasizing inter- and intra-patient variability powered by deep learning. As such, the present review endeavors to exploit digital technologies and AI to create disease-specific phenotypic explanations, facilitating the understanding of neurodegenerative diseases as "bio-psycho-social" conditions. Not only does this translational effort within explainable digital phenotyping foster the understanding of disease-induced traits, but it also enhances diagnostic and, eventually, treatment personalization.
RESUMEN
Attention Deficit/Hyperactivity Disorder (ADHD) is a common neurodevelopmental disorder mainly affecting children. ADHD children brain activity is reported to present alterations from neurotypically developed children, yet establishment of an EEG biomarker, which is of high importance in clinical practice and research, has not been achieved. In this work, task-related EEG recordings from 61 ADHD and 60 age-matched non-ADHD children are analyzed to examine the underlying Cross-Frequency Coupling phenomena. The proposed framework introduces personalized brain rhythm extraction in the form of oscillatory modes via Swarm Decomposition, allowing for the transition from sensor-level connectivity to source-level connectivity. Oscillatory modes are then subjected to a phase locking value-based feature extraction and the efficiency of the extracted features in separating ADHD from non-ADHD individuals is evaluated by means of a nested 5-fold cross validation scheme. The experimental results of the proposed framework (Area Under the Receiver Operating Characteristics Curve-AUROC: 0.9166) when benchmarked against the commonly used filter-based brain rhythm extraction (AUROC: 0.8361) underscore its efficiency and demonstrate its overall superiority over other state-of-the-art functional connectivity approaches in this classification task for this dataset.Clinical relevance-This framework provides novel insights about brain regions of interest that are involved in ADHD task-related function and holds promise in providing objective ADHD biomarkers by extending classic sensor-level connectivity to source-level.
Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Niño , Humanos , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico , Encéfalo , Electroencefalografía/métodosRESUMEN
After the breakthroughs of Transformer networks in Natural Language Processing (NLP) tasks, they have led to exciting progress in visual tasks as well. Nonetheless, there has been a parallel growth in the number of parameters and the amount of training data, which led to the conclusion that Transformers are not suited for small datasets. This paper is the first to convey the feasibility of Compact Convolutional Transformers (CCT) for the prediction of Parkinsonian postural tremor based on the Bispectrum (BS) representation of IMU accelerometer time series. The dataset includes tri-axial accelerometer signals collected unobtrusively in-the-wild while subjects are on a phone call, and labelled by neurologists and signal processing experts. The BS is a noise-immune, higher-order representation that reflects a signal's deviation from Gaussianity and measures quadratic phase coupling. We performed comparative classification experiments using the CCT, pre-trained CNNs such as VGG-16 and ResNet-50, and the conventional Vision Transformer (ViT). Our model achieves competitive prediction accuracy and F1 score of 96% with only 1.016 M trainable parameters, compared to the ViT with 21.659 M trainable parameters, in a five-fold cross-validation scheme. Our model also outperforms pre-trained CNNs such as VGG-16 and ResNet-50. Furthermore, we show that the performance gains are maintained when training on a larger dataset of BS images. Our effort here is motivated by the hypothesis that data-efficient transformers outperform transfer learning using pre-trained CNNs, paving the way for promising deep learning architecture for small-scale, novel and noisy medical imaging datasets.Clinical relevance- Novel deep learning model for unobtrusive prediction of Parkinsonian Postural Tremor from Bispectrum image representation of tri-axial accelerometer signals collected in-the-wild.
Asunto(s)
Suministros de Energía Eléctrica , Temblor , Humanos , Temblor/diagnóstico , Procesamiento de Lenguaje Natural , Distribución Normal , AcelerometríaRESUMEN
The unmet timely diagnosis requirements, that take place years after substantial neural loss and neuroperturbations in neuropsychiatric disorders, affirm the dire need for biomarkers with proven efficacy. In Parkinson's disease (PD), Mild Cognitive impairment (MCI), Alzheimers disease (AD) and psychiatric disorders, it is difficult to detect early symptoms given their mild nature. We hypothesize that employing fine motor patterns, derived from natural interactions with keyboards, also knwon as keystroke dynamics, could translate classic finger dexterity tests from clinics to populations in-the-wild for timely diagnosis, yet, further evidence is required to prove this efficiency. We have searched PubMED, Medline, IEEEXplore, EBSCO and Web of Science for eligible diagnostic accuracy studies employing keystroke dynamics as an index test for the detection of neuropsychiatric disorders as the main target condition. We evaluated the diagnostic performance of keystroke dynamics across 41 studies published between 2014 and March 2022, comprising 3791 PD patients, 254 MCI patients, and 374 psychiatric disease patients. Of these, 25 studies were included in univariate random-effect meta-analysis models for diagnostic performance assessment. Pooled sensitivity and specificity are 0.86 (95% Confidence Interval (CI) 0.82-0.90, I2 = 79.49%) and 0.83 (CI 0.79-0.87, I2 = 83.45%) for PD, 0.83 (95% CI 0.65-1.00, I2 = 79.10%) and 0.87 (95% CI 0.80-0.93, I2 = 0%) for psychomotor impairment, and 0.85 (95% CI 0.74-0.96, I2 = 50.39%) and 0.82 (95% CI 0.70-0.94, I2 = 87.73%) for MCI and early AD, respectively. Our subgroup analyses conveyed the diagnosis efficiency of keystroke dynamics for naturalistic self-reported data, and the promising performance of multimodal analysis of naturalistic behavioral data and deep learning methods in detecting disease-induced phenotypes. The meta-regression models showed the increase in diagnostic accuracy and fine motor impairment severity index with age and disease duration for PD and MCI. The risk of bias, based on the QUADAS-2 tool, is deemed low to moderate and overall, we rated the quality of evidence to be moderate. We conveyed the feasibility of keystroke dynamics as digital biomarkers for fine motor decline in naturalistic environments. Future work to evaluate their performance for longitudinal disease monitoring and therapeutic implications is yet to be performed. We eventually propose a partnership strategy based on a "co-creation" approach that stems from mechanistic explanations of patients' characteristics derived from data obtained in-clinics and under ecologically valid settings. The protocol of this systematic review and meta-analysis is registered in PROSPERO; identifier CRD42021278707. The presented work is supported by the KU-KAIST joint research center.