Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Angew Chem Int Ed Engl ; 62(38): e202307451, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37477970

RESUMEN

The first protein-binding allosteric RNA-cleaving DNAzyme (RCD) obtained by direct in vitro selection against eosinophil peroxidase (EPX), a validated marker for airway eosinophilia, is described. The RCD has nanomolar affinity for EPX, shows high selectivity against related peroxidases and other eosinophil proteins, and is resistant to degradation by mammalian nucleases. An optimized RCD was used to develop both fluorescence and lateral flow assays, which were evaluated using 38 minimally processed patient sputum samples (23 non-eosinophilic, 15 eosinophilic), producing a clinical sensitivity of 100 % and specificity of 96 %. This RCD-based lateral flow assay should allow for rapid evaluation of airway eosinophilia as an aid for guiding asthma therapy.


Asunto(s)
ADN Catalítico , Peroxidasa del Eosinófilo , Eosinofilia , Esputo , Animales , Humanos , ADN Catalítico/metabolismo , Peroxidasa del Eosinófilo/metabolismo , Eosinofilia/diagnóstico , Eosinófilos/enzimología , Esputo/química , Esputo/citología
2.
Angew Chem Int Ed Engl ; 61(3): e202112346, 2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-34816559

RESUMEN

Detection of pathogenic bacteria in complex biological matrices remains a major challenge. Herein, we report the selection and optimization of a new DNAzyme for Staphylococcus aureus (SA) and the use of the DNAzyme to develop a simple lateral flow device (LFD) for detection of SA in nasal mucus. The DNAzyme was generated by in vitro selection using a crude extra/intracellular mixture derived from SA, which could be used directly for simple solution or paper-based fluorescence assays for SA. The DNAzyme was further modified to produce a DNA cleavage fragment that acted as a bridging element to bind DNA-modified gold nanoparticles to the test line of a LFD, producing a simple colorimetric dipstick test. The LFD was evaluated with nasal mucus samples spiked with SA, and demonstrated that SA detection was possible in minutes with minimal sample processing.


Asunto(s)
Técnicas Biosensibles , ADN Catalítico/metabolismo , Moco/microbiología , Cavidad Nasal/microbiología , Staphylococcus aureus/aislamiento & purificación , Humanos , Staphylococcus aureus/metabolismo
3.
Anal Chem ; 91(7): 4735-4740, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30869875

RESUMEN

A paper based litmus test has been developed using modulation of urease enzyme activity for detection of C-C mismatch single nucleotide polymorphisms (SNPs) by the naked eye. Urease is first inactivated with silver ions and printed onto paper microzones. Addition of DNA containing C-C mismatches reactivates urease via binding of Ag(I), allowing restoration of urease activity, hydrolysis of urea to produce ammonia, and an increase in pH, which is monitored colorimetrically using a pH indicator with a limit of detection of 11 nM DNA in 40 min. The assay system is easy to use, portable, and stable for at least 30 days at ambient temperature. To assess the versatility and practical application of the paper sensor, we used it to identify a G > C transversion present in human genomic DNA from a ductal carcinoma cell line, a mutation commonly found in breast cancer. We believe this new assay system has the potential to be a low-cost method for rapidly identifying DNA with the C-C mismatch SNP as a means of cancer screening in resource-limited areas.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Colorimetría , ADN de Neoplasias/genética , Pruebas de Enzimas , Polimorfismo de Nucleótido Simple/genética , Femenino , Humanos , Concentración de Iones de Hidrógeno
4.
Chembiochem ; 20(7): 906-910, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30521678

RESUMEN

Pathogenic bacteria pose a serious threat to public health, and the rapid and cost-effective detection of such bacteria remains a major challenge. Herein, we present a DNAzyme-based fluorescent paper sensor for Klebsiella pneumoniae. The DNAzyme was generated by an in vitro selection technique to cleave a fluorogenic DNA-RNA chimeric substrate in the presence of K. pneumoniae. The DNAzyme was printed on a paper substrate in a 96-well format to serve as mix-and-read fluorescent assay that exhibits a limit of detection (LOD) 105  CFUs mL-1 . Evaluated with 20 strains of clinical bacterial isolates, the DNAzyme produced the desired fluorescence signal with the samples of K. pneumoniae, regardless of their source or drug resistance. The assay is simple to use, rapid, inexpensive, and avoids the complex procedures of sample preparation and equipment. We believe that this DNAzyme-based fluorescent assay has potential for practical applications to identify K. pneumoniae.


Asunto(s)
Técnicas de Tipificación Bacteriana/métodos , ADN Catalítico/química , Klebsiella pneumoniae/aislamiento & purificación , Técnicas de Tipificación Bacteriana/instrumentación , Colorantes Fluorescentes/química , Fluorometría/métodos , Biblioteca de Genes , Límite de Detección , Papel
5.
Angew Chem Int Ed Engl ; 58(29): 9907-9911, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31095864

RESUMEN

The reliable detection of pathogenic bacteria in complex biological samples using simple assays or devices remains a major challenge. Herein, we report a simple colorimetric paper device capable of providing specific and sensitive detection of Helicobacter pylori (H. pylori), a pathogen strongly linked to gastric carcinoma, gastric ulcers, and duodenal ulcers, in stool samples. The sensor molecule, an RNA-cleaving DNAzyme obtained through in vitro selection, is activated by a protein biomarker from H. pylori. The colorimetric paper sensor, designed on the basis of the RNA-cleaving property of the DNAzyme, is capable of sensitive detection of H. pylori in human stool samples with minimal sample processing and provides results in minutes. It remains fully functional under storage at ambient temperature for at least 130 days. This work lays a foundation for developing DNAzyme-enabled paper-based point-of-care diagnostic devices for monitoring pathogens in complex samples.


Asunto(s)
Técnicas Biosensibles/métodos , Colorimetría/métodos , ADN Catalítico/metabolismo , Infecciones por Helicobacter/diagnóstico , Helicobacter pylori/patogenicidad , Humanos
6.
Langmuir ; 33(32): 7854-7861, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28732155

RESUMEN

The structure and electrochemical properties of adsorbed complexes based on mixtures of polyvinylamine-g-TEMPO (PVAm-T) and laccase were related to the ability of the adsorbed complexes to oxidize cellulose. PVAm-T10 with 10% of the amines bearing TEMPO moieties (i.e., DS = 10%), adsorbed onto gold sulfonate EQCM-D sensor surfaces giving a hydrogel film that was 7 nm thick, 89% water, and encasing laccase (200 mM) and TEMPO moieties (33 mM). For DS values >10%, all of the TEMPOs in the hydrogel film were redox-active in that they could be oxidized by the electrode. With hydrogel layers made with lower-DS PVAm-Ts, only about half of the TEMPOs were redox-active; 10% DS appears to be a percolation threshold for complete TEMPO-to-TEMPO electron transport. In parallel experiments with hydrogel complexes adsorbed onto regenerated cellulose films, the aldehyde concentrations increased monotonically with the density of redox-active TEMPO moieties in the adsorbed hydrogel. The maximum density of aldehydes was 0.24 µmol/m2, about 10 times less than the theoretical concentration of primary hydroxyl groups exposed on crystalline cellulose surfaces. Previous work showed that PVAm-T/laccase complexes are effective adhesives between wet cellulose surfaces when the DS is >10%. This work supports the explanation that TEMPO-to-TEMPO electron transport is required for the generation of aldehydes necessary for wet adhesion to PVAm.

7.
Anal Chem ; 88(5): 2929-36, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26857643

RESUMEN

A library of 32 polystyrene copolymer latexes, with diameters ranging between 53 and 387 nm, was used to develop and demonstrate a high-throughput assay using a 96-well microplate platform to measure critical coagulation concentrations, a measure of colloidal stability. The most robust assay involved an automated centrifugation-decantation step to remove latex aggregates before absorbance measurements, eliminating aggregate interference with optical measurements made through the base of the multiwell plates. For smaller nanoparticles (diameter <150 nm), the centrifugation-decantation step was not required as the interference was less than with larger particles. Parallel measurements with a ChemiDoc MP plate scanner gave indications of aggregation; however, the results were less sensitive than the absorbance measurements.

8.
Chem Soc Rev ; 44(5): 1240-56, 2015 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-25561050

RESUMEN

Aptamers are single-stranded DNA or RNA oligomers, identified from a random sequence pool, with the ability to form unique and versatile tertiary structures that bind to cognate molecules with superior specificity. Their small size, excellent chemical stability and low immunogenicity enable them to rival antibodies in cancer imaging and therapy applications. Their facile chemical synthesis, versatility in structural design and engineering, and the ability for site-specific modifications with functional moieties make aptamers excellent recognition motifs for cancer biomarker discovery and detection. Moreover, aptamers can be selected or engineered to regulate cancer protein functions, as well as to guide anti-cancer drug design or screening. This review summarizes their applications in cancer, including cancer biomarker discovery and detection, cancer imaging, cancer therapy, and anti-cancer drug discovery. Although relevant applications are relatively new, the significant progress achieved has demonstrated that aptamers can be promising players in cancer research.


Asunto(s)
Aptámeros de Nucleótidos/química , Neoplasias/diagnóstico , Neoplasias/terapia , Antineoplásicos/uso terapéutico , Biomarcadores , Diseño de Fármacos , Humanos
9.
Chem Soc Rev ; 43(10): 3324-41, 2014 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-24643375

RESUMEN

Rolling circle amplification (RCA) is an isothermal enzymatic process where a short DNA or RNA primer is amplified to form a long single stranded DNA or RNA using a circular DNA template and special DNA or RNA polymerases. The RCA product is a concatemer containing tens to hundreds of tandem repeats that are complementary to the circular template. The power, simplicity, and versatility of the DNA amplification technique have made it an attractive tool for biomedical research and nanobiotechnology. Traditionally, RCA has been used to develop sensitive diagnostic methods for a variety of targets including nucleic acids (DNA, RNA), small molecules, proteins, and cells. RCA has also attracted significant attention in the field of nanotechnology and nanobiotechnology. The RCA-produced long, single-stranded DNA with repeating units has been used as template for the periodic assembly of nanospecies. Moreover, since RCA products can be tailor-designed by manipulating the circular template, RCA has been employed to generate complex DNA nanostructures such as DNA origami, nanotubes, nanoribbons and DNA based metamaterials. These functional RCA based nanotechnologies have been utilized for biodetection, drug delivery, designing bioelectronic circuits and bioseparation. In this review, we introduce the fundamental engineering principles used to design RCA nanotechnologies, discuss recently developed RCA-based diagnostics and bioanalytical tools, and summarize the use of RCA to construct multivalent molecular scaffolds and nanostructures for applications in biology, diagnostics and therapeutics.


Asunto(s)
Bioquímica , ADN Circular , Nanotecnología , Técnicas de Amplificación de Ácido Nucleico , ADN , ARN
10.
Chembiochem ; 15(9): 1268-73, 2014 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-24803415

RESUMEN

We report a simple, versatile, multivalent ligand system that is capable of specifically and efficiently modulating cell-surface receptor clustering and function. The multivalent ligand is made of a polymeric DNA scaffold decorated with biorecognition ligands (i.e., antibodies) to interrogate and modulate cell receptor signaling and function. Using CD20 clustering-mediated apoptosis in B-cell cancer cells as a model system, we demonstrated that our multivalent ligand is significantly more effective at inducing apoptosis of target cancer cells than its monovalent counterpart. This multivalent DNA material approach represents a new chemical biology tool to interrogate cell receptor signaling and functions and to potentially manipulate such functions for the development of therapeutics.


Asunto(s)
Anticuerpos/metabolismo , ADN/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Apoptosis , Humanos , Células Jurkat , Ligandos , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Células Tumorales Cultivadas
11.
Angew Chem Int Ed Engl ; 53(10): 2620-2, 2014 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-24497425

RESUMEN

An odor-based sensor system that exploits the metabolic enzyme tryptophanase (TPase) as the key component is reported. This enzyme is able to convert an odorless substrate like S-methyl-L-cysteine or L-tryptophan into the odorous products methyl mercaptan or indole. To make a biosensor, TPase was biotinylated so that it could be coupled with a molecular recognition element, such as an antibody, to develop an ELISA-like assay. This method was used for the detection of an antibody present in nM concentrations by the human nose. TPase can also be combined with the enzyme pyridoxal kinase (PKase) for use in a coupled assay to detect adenosine 5'-triphosphate (ATP). When ATP is present in the low µM concentration range, the coupled enzymatic system generates an odor that is easily detectable by the human nose. Biotinylated TPase can be combined with various biotin-labeled molecular recognition elements, thereby enabling a broad range of applications for this odor-based reporting system.


Asunto(s)
Adenosina Trifosfato/análisis , Técnicas Biosensibles , Desodorantes/metabolismo , Triptofanasa/metabolismo , Adenosina Trifosfato/metabolismo , Desodorantes/química , Estructura Molecular , Odorantes , Piridoxal Quinasa/química , Piridoxal Quinasa/metabolismo , Triptofanasa/química
12.
Anal Bioanal Chem ; 403(6): 1567-76, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22526653

RESUMEN

Rapid, sensitive, on-site detection of bacteria without a need for sophisticated equipment or skilled personnel is extremely important in clinical settings and rapid response scenarios, as well as in resource-limited settings. Here, we report a novel approach for selective and ultra-sensitive multiplexed detection of Escherichia coli (non-pathogenic or pathogenic) using a lab-on-paper test strip (bioactive paper) based on intracellular enzyme (ß-galactosidase (B-GAL) or ß-glucuronidase (GUS)) activity. The test strip is composed of a paper support (0.5 × 8 cm), onto which either 5-bromo-4-chloro-3-indolyl-ß-D: -glucuronide sodium salt (XG), chlorophenol red ß-galactopyranoside (CPRG) or both and FeCl(3) were entrapped using sol-gel-derived silica inks in different zones via an ink-jet printing technique. The sample was lysed and assayed via lateral flow through the FeCl(3) zone to the substrate area to initiate rapid enzyme hydrolysis of the substrate, causing a change from colorless-to-blue (XG hydrolyzed by GUS, indication of nonpathogenic E. coli) and/or yellow to red-magenta (CPRG hydrolyzed by B-GAL, indication of total coliforms). Using immunomagnetic nanoparticles for selective preconcentration, the limit of detection was ~5 colony-forming units (cfu) per milliliter for E. coli O157:H7 and ~20 cfu/mL for E. coli BL21, within 30 min without cell culturing. Thus, these paper test strips could be suitable for detection of viable total coliforms and pathogens in bathing water samples. Moreover, inclusion of a culturing step allows detection of less than 1 cfu in 100 mL within 8 h, making the paper tests strips relevant for detection of multiple pathogens and total coliform bacteria in beverage and food samples.


Asunto(s)
Escherichia coli/aislamiento & purificación , Papel , Colorimetría , Microbiología de Alimentos
13.
Sci Rep ; 12(1): 22476, 2022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-36577785

RESUMEN

Eosinophils are granulocytes that play a significant role in the pathogenesis of asthma and other airway diseases. Directing patient treatment based on the level of eosinophilia has been shown to be extremely effective in reducing exacerbations and therefore has tremendous potential as a routine clinical test. Herein, we describe the in vitro selection and optimization of DNA aptamers that bind to eosinophil peroxidase (EPX), a protein biomarker unique to eosinophils. Fifteen rounds of magnetic bead aptamer selection were performed prior to high throughput DNA sequencing. The top 10 aptamer candidates were assessed for EPX binding using a mobility shift assay. This process identified a lead aptamer candidate termed EAP1-05 with low nanomolar affinity and high specificity for EPX over other common sputum proteins. This aptamer sequence was further optimized through truncation and used to develop an easy-to-use colourimetric pull-down assay that can detect EPX over a concentration range from 1 - 100 nM in processed sputum. Forty-six clinical samples were processed using a new sputum dispersal method, appropriate for a rapid assessment assay, that avoids centrifugation and lengthy processing times. The assay showed 89% sensitivity and 96% specificity to detect eosinophilia (compared to gold standard sputum cytometry), with results being produced in under an hour. This assay could allow for an easy assessment of eosinophil activity in the airway to guide anti-inflammatory therapy for several airway diseases.


Asunto(s)
Asma , Eosinofilia , Humanos , Peroxidasa del Eosinófilo/metabolismo , Esputo/metabolismo , Eosinofilia/patología , Eosinófilos/metabolismo , Asma/metabolismo
14.
ACS Appl Mater Interfaces ; 13(2): 2360-2370, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33411496

RESUMEN

A simple approach to fabricating hydrogel-based DNA microarrays is reported by physically entrapping the rolling circle amplification (RCA) product inside printable in situ gelling hydrazone cross-linked poly(oligoethylene glycol methacrylate) hydrogels. The hydrogel-printed RCA microarray facilitates improved RCA immobilization (>65% even after vigorous washing) and resistance to denaturation relative to RCA-only printed microarrays in addition to size-discriminative sensing of DNA probes (herein, 27 or fewer nucleotides) depending on the internal porosity of the hydrogel. Furthermore, the high number of sequence repeats in the concatemeric RCA product enables high-sensitivity detection of complementary DNA probes without the need for signal amplification, with signal/noise ratios of 10 or more achieved over a short 30 min assay time followed by minimal washing. The inherent antifouling properties of the hydrogel enable discriminative hybridization in complex biological samples, particularly for short (∼10 nt) oligonucleotides whose hybridization in other assays tends to be transient and of low affinity. The scalable manufacturability and efficient performance of these hydrogel-printed RCA microarrays thus offer potential for rapid, parallel, and inexpensive sensing of short DNA/RNA biomarkers and ligands, a critical current challenge in diagnostic and affinity screening assays.


Asunto(s)
ADN/análisis , Hidrogeles/química , Técnicas de Amplificación de Ácido Nucleico/instrumentación , Análisis de Secuencia por Matrices de Oligonucleótidos/instrumentación , ARN/análisis , Bioimpresión , Sondas de ADN/química , Diseño de Equipo
15.
Angew Chem Int Ed Engl ; 48(19): 3512-5, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19360817

RESUMEN

Target detection by the naked eye: The action of an RNA-cleaving allosteric DNAzyme in response to ligand binding was coupled to a rolling circle amplification process to generate long single-stranded DNA molecules for colorimetric sensing (see scheme). Upon hybridization of the resulting DNA with a complementary PNA sequence in the presence of a duplex-binding dye, the color of the dye changed from blue to purple.


Asunto(s)
Técnicas Biosensibles , Colorimetría/métodos , Colorantes/metabolismo , ADN Catalítico/química , ADN de Cadena Simple/biosíntesis , Ácidos Nucleicos de Péptidos/química , Regulación Alostérica , Replicación del ADN , ADN de Cadena Simple/química , Hibridación de Ácido Nucleico
16.
Anal Chem ; 80(22): 8431-7, 2008 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-18847216

RESUMEN

The majority of bioassays utilize thermosensitive reagents (e.g., biomolecules) and laboratory conditions for analysis. The developing world, however, requires inexpensive, simple-to-perform tests that do not require refrigeration or access to highly trained technicians. To address this need, paper-based bioassays using gold nanoparticle (AuNP) colorimetric probes have been developed. In the two prototype DNase I and adenosine-sensing assays, blue (or black)-colored DNA-cross-linked AuNP aggregates were spotted on paper substrates. The addition of target DNase I (or adenosine) solution dissociated the gold aggregates into dispersed AuNPs, which generated an intense red color on paper within one minute. Both hydrophobic and (poly(vinyl alcohol)-coated) hydrophilic paper substrates were suitable for this biosensing platform; by contrast, uncoated hydrophilic paper caused "bleeding" and premature cessation of the assay due to surface drying. The assays are surprisingly thermally stable. During preparation, AuNP aggregate-coated papers can be dried at elevated temperatures (e.g., 90 degrees C) without significant loss of biosensing performance, which suggests the paper substrate protects AuNP aggregate probes from external nonspecific stimuli (e.g., heat). Moreover, the dried AuNP aggregate-coated papers can be stored for at least several weeks without loss of the biosensing function. The combination of paper substrates and AuNP colorimetric probes makes the final products inexpensive, low-volume, portable, disposable, and easy-to-use. We believe this simple, practical bioassay platform will be of interest for use in areas such as disease diagnostics, pathogen detection, and quality monitoring of food and water.


Asunto(s)
Bioensayo/instrumentación , Bioensayo/métodos , Colorimetría/métodos , Oro/química , Nanopartículas del Metal/química , Papel , Tiras Reactivas/química , Adenosina/análisis , Adenosina/metabolismo , Aptámeros de Nucleótidos/química , Secuencia de Bases , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Color , Reactivos de Enlaces Cruzados/química , ADN/química , ADN/genética , ADN/metabolismo , Desoxirribonucleasa I/análisis , Desoxirribonucleasa I/metabolismo , Oro/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Temperatura
17.
Angew Chem Int Ed Engl ; 47(34): 6330-7, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18680110

RESUMEN

Rolling circle amplification (RCA) is an isothermal, enzymatic process mediated by certain DNA polymerases in which long single-stranded (ss) DNA molecules are synthesized on a short circular ssDNA template by using a single DNA primer. A method traditionally used for ultrasensitive DNA detection in areas of genomics and diagnostics, RCA has been used more recently to generate large-scale DNA templates for the creation of periodic nanoassemblies. Various RCA strategies have also been developed for the production of repetitive sequences of DNA aptamers and DNAzymes as detection platforms for small molecules and proteins. In this way, RCA is rapidly becoming a highly versatile DNA amplification tool with wide-ranging applications in genomics, proteomics, diagnosis, biosensing, drug discovery, and nanotechnology.


Asunto(s)
ADN Polimerasa Dirigida por ADN/química , ADN/análisis , ADN/biosíntesis , Nanotecnología/métodos , Técnicas de Amplificación de Ácido Nucleico
18.
Nat Commun ; 9(1): 602, 2018 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-29426913

RESUMEN

A significant problem in high-throughput drug screening is the disproportionate number of false hits associated with drug candidates that form colloidal aggregates. Such molecules, referred to as promiscuous inhibitors, nonspecifically inhibit multiple enzymes and are thus not useful as potential drugs. Here, we report a printable hydrogel-based drug-screening platform capable of non-ambiguously differentiating true enzyme inhibitors from promiscuous aggregating inhibitors, critical for accelerating the drug discovery process. The printed hydrogels can both immobilize as well as support the activity of entrapped enzymes against drying or treatment with a protease or chemical denaturant. Furthermore, the printed hydrogel can be applied in a high-throughput microarray-based screening platform (consistent with current practice) to rapidly ( <25 min) and inexpensively identify only clinically promising lead compounds with true inhibitory potential as well as to accurately quantify the dose-response relationships of those inhibitors, all while using 95% less sample than required for a solution assay.


Asunto(s)
Descubrimiento de Drogas/métodos , Evaluación Preclínica de Medicamentos/métodos , Inhibidores Enzimáticos/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Estabilidad de Enzimas , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Impresión , Impresión Tridimensional , Reproducibilidad de los Resultados
19.
J Colloid Interface Sci ; 516: 423-430, 2018 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-29408132

RESUMEN

Polystyrene nanoparticles can promote froth flotation of mineral particles if the nanoparticles are sufficiently hydrophobic and are colloidally stable in the high ionic strength solutions typical of commercial flotation operations. A library of 80 unique polystyrene nanoparticle types was prepared with click chemistry and used to determine if particles that were sufficiently hydrophilic to be colloidally stable in high ionic strength and high pH solutions, were also capable of promoting flotation. The conflicting requirements of colloidal stability and hydrophobicity can be achieved in 9 mM sodium carbonate, a very challenging environment. Instead of testing all 80 samples with laborious flotation testing, automated assays measuring colloid stability and nanoparticle hydrophobicity were employed. The colloid stability assay measured the critical coagulation concentrations (CCC). Nanoparticle hydrophobicity was characterized by water contact angle, measurements (CA). A smaller cohort of the most promising nanoparticle candidates for detailed flotation testing were identified by mapping nanoparticle properties on the CA versus CCC plain - a "Flotation Domain Diagram". We believe that this work was the first time that combinatorial synthesis and high throughput screening have been used in the development of flotation chemicals. Finally, based on the accumulated evidence, effective nanoparticle flotation collectors are likely to be ∼50 nm in diameter, with a soft hydrophobic polymer shell and with surface functional group densities in the order of magnitude of 0.1 nm-2.

20.
ACS Nano ; 12(4): 3287-3294, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29621883

RESUMEN

Here, we report the development of a transparent, durable, and flexible sensing surface that generates a fluorescence signal in the presence of a specific target bacterium. This material can be used in packaging, and it is capable of monitoring microbial contamination in various types of food products in real time without having to remove the sample or the sensor from the package. The sensor was fabricated by covalently attaching picoliter-sized microarrays of an E. coli-specific RNA-cleaving fluorogenic DNAzyme probe (RFD-EC1) to a thin, flexible, and transparent cyclo-olefin polymer (COP) film. Our experimental results demonstrate that the developed (RFD-EC1)-COP surface is specific, stable for at least 14 days under various pH conditions (pH 3-9), and can detect E. coli in meat and apple juice at concentrations as low as 103 CFU/mL. Furthermore, we demonstrate that our sensor is capable of detecting bacteria while still attached to the food package, which eliminates the need to manipulate the sample. The developed biosensors are stable for at least the shelf life of perishable packaged food products and provide a packaging solution for real-time monitoring of pathogens. These sensors hold the potential to make a significant contribution to the ongoing efforts to mitigate the negative public-health-related impacts of food-borne illnesses.


Asunto(s)
ADN Catalítico/química , Contaminación de Alimentos/análisis , Embalaje de Alimentos , Sondas Moleculares/química , Impresión Tridimensional , Técnicas Biosensibles , ADN Catalítico/metabolismo , Escherichia coli/aislamiento & purificación , Fluorescencia , Concentración de Iones de Hidrógeno , Sondas Moleculares/metabolismo , Polímeros/química , Polímeros/metabolismo , Propiedades de Superficie , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA