Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Foodborne Pathog Dis ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39029478

RESUMEN

Extended-spectrum ß-lactamase (ESBL)-producing Salmonella is emerging as a worldwide public health concern. In this study, we aimed to investigate the antimicrobial resistance profiles and molecular characteristics of ESBL-producing Salmonella enterica serovar Typhimurium (S. Typhimurium). We obtained a total of 995 S. Typhimurium isolates from the feces and carcasses of pigs (n = 678), chickens (n = 202), and cattle (n = 115) during 2010-2021 in Korea. We found that 35 S. Typhimurium isolates (3.5%) showed resistance to ceftiofur: pigs (51.4%, 18/35) and cattle (42.9%, 15/35). All of the ceftiofur-resistant S. Typhimurium isolates demonstrated multidrug resistance. Moreover, ceftiofur-resistant S. Typhimurium isolates displayed significantly higher rates of resistance to chloramphenicol and trimethoprim/sulfamethoxazole than ceftiofur-susceptible S. Typhimurium isolates (p < 0.05). The ceftiofur-resistant S. Typhimurium isolates produced four different CTX-M-type ß-lactamase, comprising blaCTX-M-55 in the majority (51.4%, 18/35), followed by blaCTX-M-65 (28.6%, 10/35), blaCTX-M-14 (17.1%, 6/35), and blaCTX-M-1 (2.9%, 1/35). Among the 35 ceftiofur-resistant S. Typhimurium isolates, 16 blaCTX-M-55-positive isolates and one blaCTX-M-1-positive isolate were transferred to recipient Escherichia coli RG488 by conjugation. The predominantly found transposable units were blaCTX-M-55-orf477 (45.7%, 16/35), followed by blaCTX-M-65-IS903 (28.6%, 10/35) and blaCTX-M-14-IS903 (17.1%, 6/35). Ceftiofur-resistant S. Typhimurium represented 19 types, with types P1-19 (22.9%, 8/35) and P12-34 (22.9%, 8/35) making up the majority and being found in most farms nationwide. Sequence types (STs) were different by animal species: ST19 (48.6%, 17/35) and ST34 (42.9%, 15/35) were mostly found STs in pigs and cattle, respectively. These findings showed that food animals, especially pigs and cattle, act as reservoirs of blaCTX-M-harboring S. Typhimurium that can potentially be spread to humans.

2.
Vet Q ; 44(1): 1-18, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38682319

RESUMEN

In the present study, we investigated the potential immunomodulatory effects of heat-killed (hLR) and live Limosilactobacillus reuteri PSC102 (LR; formerly Lactobacillus reuteri PSC102) in RAW264.7 macrophage cells and Sprague-Dawley rats. RAW264.7 murine macrophage cells were stimulated with hLR and LR for 24 h. Cyclophosphamide (CTX)-induced immunosuppressed Sprague-Dawley rats were orally administered with three doses of hLR (L-Low, M-Medium, and H-High) and LR for 3 weeks. The phagocytic capacity, production of nitric oxide (NO), and expression of cytokines in RAW264.7 cells were measured, and the different parameters of immunity in rats were determined. hLR and LR treatments promoted phagocytic activity and induced the production of NO and the expression of iNOS, TNF-α, IL-1ß, IL-6, and Cox-2 in macrophage cells. In the in vivo experiment, hLR and LR treatments significantly increased the immune organ indices, alleviated the spleen injury, and ameliorated the number of white blood cells, granulocytes, lymphocytes, and mid-range absolute counts in immunosuppressive rats. hLR and LR increased neutrophil migration and phagocytosis, splenocyte proliferation, and T lymphocyte subsets (CD4+, CD8+, CD45RA+, and CD28+). The levels of immune factors (IL-2, IL-4, IL-6, IL-10, IL-12A, TNF-α, and IFN-γ) in the hLR and LR groups were upregulated compared with those in the CTX-treatment group. hLR and LR treatments could also modulate the gut microbiota composition, thereby increasing the relative abundance of Bacteroidetes and Firmicutes but decreasing the level of Proteobacteria. hLR and LR protected against CTX-induced adverse reactions by modulating the immune response and gut microbiota composition. Therefore, they could be used as potential immunomodulatory agents.


Asunto(s)
Ciclofosfamida , Microbioma Gastrointestinal , Limosilactobacillus reuteri , Ratas Sprague-Dawley , Animales , Ciclofosfamida/farmacología , Ratas , Ratones , Células RAW 264.7 , Microbioma Gastrointestinal/efectos de los fármacos , Probióticos/farmacología , Probióticos/administración & dosificación , Masculino , Citocinas/metabolismo , Fagocitosis/efectos de los fármacos , Óxido Nítrico/metabolismo , Inmunosupresores/farmacología
3.
Cell Rep ; 43(3): 113813, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38393947

RESUMEN

Peptidoglycan recognition protein 1 (PGLYRP1) is a pattern-recognition protein that mediates antibacterial actions and innate immune responses. Its expression and role in neuroinflammatory conditions remain unclear. We observed the upregulation of PGLYRP1 in inflamed human and mouse spinal cord and brain, with microglia being the primary cellular source. Experiments using a recombinant PGLYRP1 protein show that PGLYRP1 potentiates reactive gliosis, neuroinflammation, and consequent behavioral changes in multiple animal models of neuroinflammation. Furthermore, shRNA-mediated knockdown of Pglyrp1 gene expression attenuates this inflammatory response. In addition, we identify triggering receptor expressed on myeloid cell-1 (TREM1) as an interaction partner of PGLYRP1 and demonstrate that PGLYRP1 promotes neuroinflammation through the TREM1-Syk-Erk1/2-Stat3 axis in cultured glial cells. Taken together, our results reveal a role for microglial PGLYRP1 as a neuroinflammation mediator. Finally, we propose that PGLYRP1 is a potential biomarker and therapeutic target in various neuroinflammatory diseases.


Asunto(s)
Microglía , Enfermedades Neuroinflamatorias , Animales , Ratones , Humanos , Microglía/metabolismo , Receptor Activador Expresado en Células Mieloides 1/metabolismo , Inmunidad Innata , Inflamación/metabolismo , Citocinas/metabolismo
4.
Microorganisms ; 11(12)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38138136

RESUMEN

Enterococcus spp. are typically found in the gastrointestinal tracts of humans and animals. However, they have the potential to produce opportunistic infections that can be transmitted to humans or other animals, along with acquired antibiotic resistance. In this study, we aimed to investigate the antimicrobial resistance profiles of Enterococcus faecium and Enterococcus faecalis isolates obtained from companion animal dogs and cats in Korea during 2020-2022. The resistance rates in E. faecalis towards most of the tested antimicrobials were relatively higher than those in E. faecium isolated from dogs and cats. We found relatively higher resistance rates to tetracycline (65.2% vs. 75.2%) and erythromycin (39.5% vs. 49.6%) in E. faecalis isolated from cats compared to those from dogs. However, in E. faecium, the resistance rates towards tetracycline (35.6% vs. 31.5%) and erythromycin (40.3% vs. 35.2%) were comparatively higher for dog isolates than cats. No or very few E. faecium and E. faecalis isolates were found to be resistant to daptomycin, florfenicol, tigecycline, and quinupristin/dalfopristin. Multidrug resistance (MDR) was higher in E. faecalis recovered from cats (44%) and dogs (33.9%) than in E. faecium isolated from cats (24.1%) and dogs (20.5%). Moreover, MDR patterns in E. faecalis isolates from dogs (27.2%) and cats (35.2%) were shown to encompass five or more antimicrobials. However, E. faecium isolates from dogs (at 13.4%) and cats (at 14.8%) were resistant to five or more antimicrobials. Taken together, the prevalence of antimicrobial-resistant enterococci in companion animals presents a potential public health concern.

5.
Antibiotics (Basel) ; 13(1)2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38247586

RESUMEN

The occurrence of antimicrobial-resistant bacteria in companion animals poses public health hazards globally. This study aimed to evaluate the antimicrobial resistance profiles and patterns of commensal E. coli strains obtained from fecal samples of healthy dogs and cats in South Korea between 2020 and 2022. In total, 843 E. coli isolates (dogs, n = 637, and cats, n = 206) were assessed for susceptibility to 20 antimicrobials. The resistance rates of the most tested antimicrobials were significantly higher in dog than in cat isolates. Cefalexin (68.9%) demonstrated the highest resistance rates, followed by ampicillin (38.3%), tetracycline (23.1%), and cefazolin (18.7%). However, no or very low resistance (0-0.6%) to amikacin, imipenem, piperacillin, and colistin was found in both dog and cat isolates. Overall, 42.3% of the isolates exhibited multidrug resistance (MDR). MDR in isolates from dogs (34.9%) was significantly higher than in those from cats (20.9%). The main components of the resistance patterns were cefalexin and ampicillin in both dog and cat isolates. Additionally, MDR patterns in isolates from dogs (29.2%) and cats (16%) were shown to encompass five or more antimicrobials. Multidrug-resistant commensal E. coli could potentially be spread to humans or other animals through clonal or zoonotic transmission. Therefore, the incidence of antimicrobial resistance in companion animals highlights the urgent need to restrict antimicrobial resistance and ensure the prudent use of antimicrobials in Korea.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA