Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 107(5-6): 2011-2025, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36719433

RESUMEN

Hydrothermal liquefaction (HTL) is an emerging method for thermochemical conversion of wet organic waste and biomass into renewable biocrude. HTL also produces an aqueous phase (HTL-AP) side stream containing 2-4% light organic compounds that require treatment. Although anaerobic digestion (AD) of HTL-AP has shown promise, lengthy time periods were required for AD microbial communities to adapt to metabolic inhibitors in HTL-AP. An alternative for HTL-AP valorization was recently demonstrated using two engineered strains of Yarrowia lipolytica, E26 and Diploid TAL, for the overproduction of lipids and the polyketide triacetic acid lactone (TAL) respectively. These strains tolerated up to 10% HTL-AP (v/v) in defined media and up to 25% (v/v) HTL-AP in rich media. In this work, adaptive laboratory evolution (ALE) of these strains increased the bulk population tolerance for HTL-AP to up to 30% (v/v) in defined media and up to 35% (v/v) for individual isolates in rich media. The predominate organic acids within HTL-AP (acetic, butyric, and propionic) were rapidly consumed by the evolved Y. lipolytica strains. A TAL-producing isolate (strain 144-3) achieved a nearly 3-fold increase in TAL titer over the parent strain while simultaneously reducing the chemical oxygen demand (COD) of HTL-AP containing media. Fermentation with HTL-AP as the sole nutrient source demonstrated direct conversion of waste into TAL at 10% theoretical yield. Potential genetic mutations of evolved TAL production strains that could be imparting tolerance were explored. This work advances the potential of Y. lipolytica to biologically treat and simultaneously extract value from HTL wastewater. KEY POINTS: • Adaptive evolution of two Y. lipolytica strains enhanced their tolerance to waste. • Y. lipolytica reduces chemical oxygen demand in media containing waste. • Y. lipolytica can produce triacetic acid lactone directly from wastewater.


Asunto(s)
Policétidos , Yarrowia , Aguas Residuales , Yarrowia/metabolismo , Fermentación , Policétidos/metabolismo
2.
Bioresour Technol ; 313: 123639, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32534224

RESUMEN

Hydrothermal liquefaction is a promising technology to upgrade wet organic waste into a biocrude oil for diesel or jet fuel; however, this process generates an acid-rich aqueous phase which poses disposal issues. This hydrothermal liquefaction aqueous phase (HTL-AP) contains organic acids, phenol, and other toxins. This work demonstrates that Y. lipolytica as a unique host to valorize HTL-AP into a variety of co-products. Specifically, strains of Y. lipolytica can tolerate HTL-AP at 10% in defined media and 25% in rich media. The addition of HTL-AP enhances production of the polymer precursor itaconic acid by 3-fold and the polyketide triacetic acid lactone at least 2-fold. Additional co-products (lipids and citric acid) were produced in these fermentations. Finally, bioreactor cultivation enabled 21.6 g/L triacetic acid lactone from 20% HTL-AP in mixed sugar hydrolysate. These results demonstrate the first use of Y. lipolytica in HTL-AP valorization toward production of a portfolio of value-added compounds.


Asunto(s)
Yarrowia , Reactores Biológicos , Ácido Cítrico , Fermentación , Lípidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA