Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Cell Sci ; 137(2)2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-38180080

RESUMEN

RhoU is an atypical member of the Rho family of small G-proteins, which has N- and C-terminal extensions compared to the classic Rho GTPases RhoA, Rac1 and Cdc42, and associates with membranes through C-terminal palmitoylation rather than prenylation. RhoU mRNA expression is upregulated in prostate cancer and is considered a marker for disease progression. Here, we show that RhoU overexpression in prostate cancer cells increases cell migration and invasion. To identify RhoU targets that contribute to its function, we found that RhoU homodimerizes in cells. We map the region involved in this interaction to the C-terminal extension and show that C-terminal palmitoylation is required for self-association. Expression of the isolated C-terminal extension reduces RhoU-induced activation of p21-activated kinases (PAKs), which are known downstream targets for RhoU, and induces cell morphological changes consistent with inhibiting RhoU function. Our results show for the first time that the activity of a Rho family member is stimulated by self-association, and this is important for its activity.


Asunto(s)
Neoplasias de la Próstata , Proteínas de Unión al GTP rho , Humanos , Masculino , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34035176

RESUMEN

In addition to heme's role as the prosthetic group buried inside many different proteins that are ubiquitous in biology, there is new evidence that heme has substantive roles in cellular signaling and regulation. This means that heme must be available in locations distant from its place of synthesis (mitochondria) in response to transient cellular demands. A longstanding question has been to establish the mechanisms that control the supply and demand for cellular heme. By fusing a monomeric heme-binding peroxidase (ascorbate peroxidase, mAPX) to a monomeric form of green-fluorescent protein (mEGFP), we have developed a heme sensor (mAPXmEGFP) that can respond to heme availability. By means of fluorescence lifetime imaging, this heme sensor can be used to quantify heme concentrations; values of the mean fluorescence lifetime (τMean) for mAPX-mEGFP are shown to be responsive to changes in free (unbound) heme concentration in cells. The results demonstrate that concentrations are typically limited to one molecule or less within cellular compartments. These miniscule amounts of free heme are consistent with a system that sequesters the heme and is able to buffer changes in heme availability while retaining the capability to mobilize heme when and where it is needed. We propose that this exchangeable supply of heme can operate using mechanisms for heme transfer that are analogous to classical ligand-exchange mechanisms. This exquisite control, in which heme is made available for transfer one molecule at a time, protects the cell against the toxic effect of excess heme and offers a simple mechanism for heme-dependent regulation in single-molecule steps.


Asunto(s)
Hemo/análisis , Hemo/metabolismo , Técnicas de Sonda Molecular , Ascorbato Peroxidasas , Escherichia coli , Proteínas Fluorescentes Verdes
3.
Appl Environ Microbiol ; 88(13): e0069822, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35695569

RESUMEN

Extracellular DNA (eDNA) is an important component of biofilm matrix that serves to maintain biofilm structural integrity, promotes genetic exchange within the biofilm, and provides protection against antimicrobial compounds. Advances in microscopy techniques have provided evidence of the cobweb- or lattice-like structures of eDNA within biofilms from a range of environmental niches. However, methods to reliably assess the abundance and architecture of eDNA remain lacking. This study aimed to address this gap by development of a novel, high-throughput image acquisition and analysis platform for assessment of eDNA networks in situ within biofilms. Utilizing Streptococcus gordonii as the model, the capacity for this imaging system to reliably detect eDNA networks and monitor changes in abundance and architecture (e.g., strand length and branch number) was verified. Evidence was provided of a synergy between glucans and eDNA matrices, while it was revealed that surface-bound nuclease SsnA could modify these eDNA structures under conditions permissive for enzymatic activity. Moreover, cross talk between the competence and hexaheptapeptide permease systems was shown to regulate eDNA release by S. gordonii. This novel imaging system can be applied across the wider field of biofilm research, with potential to significantly advance interrogation of the mechanisms by which the eDNA network architecture develops, how it can influence biofilm properties, and how it may be targeted for therapeutic benefit. IMPORTANCE Extracellular DNA (eDNA) is critical for maintaining the structural integrity of many microbial biofilms, making it an attractive target for the management of biofilms. However, our knowledge and targeting of eDNA are currently hindered by a lack of tools for the quantitative assessment of eDNA networks within biofilms. Here, we demonstrate use of a novel image acquisition and analysis platform with the capacity to reliably monitor the abundance and architecture of eDNA networks. Application of this tool to Streptococcus gordonii biofilms has provided new insights into how eDNA networks are stabilized within the biofilm and the pathways that can regulate eDNA release. This highlights how exploitation of this novel imaging system across the wider field of biofilm research has potential to significantly advance interrogation of the mechanisms by which the eDNA network architecture develops, how it can influence biofilm properties, and how it may be targeted for therapeutic benefit.


Asunto(s)
Biopelículas , Streptococcus gordonii , ADN , ADN Bacteriano/genética , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Streptococcus gordonii/fisiología
4.
Nat Chem Biol ; 14(2): 142-147, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29227472

RESUMEN

We have developed a system for producing a supramolecular scaffold that permeates the entire Escherichia coli cytoplasm. This cytoscaffold is constructed from a three-component system comprising a bacterial microcompartment shell protein and two complementary de novo coiled-coil peptides. We show that other proteins can be targeted to this intracellular filamentous arrangement. Specifically, the enzymes pyruvate decarboxylase and alcohol dehydrogenase have been directed to the filaments, leading to enhanced ethanol production in these engineered bacterial cells compared to those that do not produce the scaffold. This is consistent with improved metabolic efficiency through enzyme colocation. Finally, the shell-protein scaffold can be directed to the inner membrane of the cell, demonstrating how synthetic cellular organization can be coupled with spatial optimization through in-cell protein design. The cytoscaffold has potential in the development of next-generation cell factories, wherein it could be used to organize enzyme pathways and metabolite transporters to enhance metabolic flux.


Asunto(s)
Proteínas Bacterianas/metabolismo , Escherichia coli/metabolismo , Ingeniería Metabólica/métodos , Alcohol Deshidrogenasa/metabolismo , Bacillus/metabolismo , Proteínas Bacterianas/genética , Citoplasma/metabolismo , Escherichia coli/genética , Proteínas Luminiscentes/metabolismo , Microscopía Confocal , Dominios Proteicos , Piruvato Descarboxilasa/metabolismo
5.
Nat Commun ; 14(1): 4026, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37419900

RESUMEN

Platelets, small hemostatic blood cells, are derived from megakaryocytes. Both bone marrow and lung are principal sites of thrombopoiesis although underlying mechanisms remain unclear. Outside the body, however, our ability to generate large number of functional platelets is poor. Here we show that perfusion of megakaryocytes ex vivo through the mouse lung vasculature generates substantial platelet numbers, up to 3000 per megakaryocyte. Despite their large size, megakaryocytes are able repeatedly to passage through the lung vasculature, leading to enucleation and subsequent platelet generation intravascularly. Using ex vivo lung and an in vitro microfluidic chamber we determine how oxygenation, ventilation, healthy pulmonary endothelium and the microvascular structure support thrombopoiesis. We also show a critical role for the actin regulator Tropomyosin 4 in the final steps of platelet formation in lung vasculature. This work reveals the mechanisms of thrombopoiesis in lung vasculature and informs approaches to large-scale generation of platelets.


Asunto(s)
Plaquetas , Microfluídica , Ratones , Animales , Megacariocitos , Trombopoyesis , Pulmón
6.
Front Mol Neurosci ; 15: 893739, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35721319

RESUMEN

Bin-Amphiphysin-Rvs (BAR) domain proteins are critical regulators of membrane geometry. They induce and stabilize membrane curvature for processes, such as clathrin-coated pit formation and endosomal membrane tubulation. BAR domains form their characteristic crescent-shaped structure in the dimeric form, indicating that the formation of the dimer is critical to their function of inducing membrane curvature and suggesting that a dynamic monomer-dimer equilibrium regulated by cellular signaling would be a powerful mechanism for controlling BAR domain protein function. However, to the best of our knowledge, cellular mechanisms for regulating BAR domain dimerization remain unexplored. PICK1 is a Ca2+-binding BAR domain protein involved in the endocytosis and endosomal recycling of neuronal AMPA receptors and other transmembrane proteins. In this study, we demonstrated that PICK1 dimerization is regulated by a direct effect of Ca2+ ions via acidic regions in the BAR domain and at the N-terminus. While the cellular membrane tubulating activity of PICK1 is absent under basal conditions, Ca2+ influx causes the generation of membrane tubules that originate from the cell surface. Furthermore, in neurons, PICK1 dimerization increases transiently following NMDA receptor stimulation. We believe that this novel mechanism for regulating BAR domain dimerization and function represents a significant conceptual advance in our knowledge about the regulation of cellular membrane curvature.

7.
Biofabrication ; 15(1)2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36321254

RESUMEN

We describe the development of a high-throughput bioprinted colorectal cancer (CRC) spheroid platform with high levels of automation, information content, and low cell number requirement. This is achieved via the formulation of a hydrogel bioink with a compressive Young's modulus that is commensurate with that of colonic tissue (1-3 kPa), which supports exponential growth of spheroids from a wide range of CRC cell lines. The resulting spheroids display tight cell-cell junctions, bioink matrix-cell interactions and necrotic hypoxic cores. By combining high content light microscopy imaging and processing with rapid multiwell plate bioprinting, dose-response profiles are generated from CRC spheroids challenged with oxaliplatin (OX) and fluorouracil (5FU), as well as radiotherapy. Bioprinted CRC spheroids are shown to exhibit high levels of chemoresistance relative to cell monolayers, and OX was found to be significantly less effective against tumour spheroids than in monolayer culture, when compared to 5FU.


Asunto(s)
Bioimpresión , Neoplasias Colorrectales , Humanos , Esferoides Celulares , Bioimpresión/métodos , Fluorouracilo , Línea Celular , Oxaliplatino
8.
Chemphyschem ; 12(3): 609-26, 2011 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-21337485

RESUMEN

A fluorescence lifetime imaging (FLIM) technology platform intended to read out changes in Förster resonance energy transfer (FRET) efficiency is presented for the study of protein interactions across the drug-discovery pipeline. FLIM provides a robust, inherently ratiometric imaging modality for drug discovery that could allow the same sensor constructs to be translated from automated cell-based assays through small transparent organisms such as zebrafish to mammals. To this end, an automated FLIM multiwell-plate reader is described for high content analysis of fixed and live cells, tomographic FLIM in zebrafish and FLIM FRET of live cells via confocal endomicroscopy. For cell-based assays, an exemplar application reading out protein aggregation using FLIM FRET is presented, and the potential for multiple simultaneous FLIM (FRET) readouts in microscopy is illustrated.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Proteínas/análisis , Línea Celular , Evaluación Preclínica de Medicamentos , Colorantes Fluorescentes/química , Proteínas Fluorescentes Verdes/química , Humanos , Microscopía Fluorescente , Unión Proteica , Rodaminas/química , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/análisis
9.
Blood Adv ; 5(7): 1884-1898, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33792632

RESUMEN

The reactivity of platelets, which play a key role in the pathogenesis of atherothrombosis, is tightly regulated. The integral membrane protein tetherin/bone marrow stromal antigen-2 (BST-2) regulates membrane organization, altering both lipid and protein distribution within the plasma membrane. Because membrane microdomains have an established role in platelet receptor biology, we sought to characterize the physiological relevance of tetherin/BST-2 in those cells. To characterize the potential importance of tetherin/BST-2 to platelet function, we used tetherin/BST-2-/- murine platelets. In the mice, we found enhanced function and signaling downstream of a subset of membrane microdomain-expressing receptors, including the P2Y12, TP thromboxane, thrombin, and GPVI receptors. Preliminary studies in humans have revealed that treatment with interferon-α (IFN-α), which upregulates platelet tetherin/BST-2 expression, also reduces adenosine diphosphate-stimulated platelet receptor function and reactivity. A more comprehensive understanding of how tetherin/BST-2 negatively regulates receptor function was provided in cell line experiments, where we focused on the therapeutically relevant P2Y12 receptor (P2Y12R). Tetherin/BST-2 expression reduced both P2Y12R activation and trafficking, which was accompanied by reduced receptor lateral mobility specifically within membrane microdomains. In fluorescence lifetime imaging-Förster resonance energy transfer (FLIM-FRET)-based experiments, agonist stimulation reduced basal association between P2Y12R and tetherin/BST-2. Notably, the glycosylphosphatidylinositol (GPI) anchor of tetherin/BST-2 was required for both receptor interaction and observed functional effects. In summary, we established, for the first time, a fundamental role of the ubiquitously expressed protein tetherin/BST-2 in negatively regulating membrane microdomain-expressed platelet receptor function.


Asunto(s)
Antígenos CD , Antígeno 2 del Estroma de la Médula Ósea , Animales , Antígenos CD/genética , Plaquetas , Línea Celular , Proteínas Ligadas a GPI/genética , Ratones
10.
Bio Protoc ; 10(21): e3806, 2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33659460

RESUMEN

Supramolecular signaling assemblies are of interest for their unique signaling properties. A µm scale signaling assembly, the central supramolecular signaling cluster (cSMAC), forms at the center interface of T cells activated by antigen presenting cells (APC). The adaptor protein linker for activation of T cells (LAT) is a key cSMAC component. The cSMAC has widely been studied using total internal reflection fluorescence microscopy of CD4+ T cells activated by planar APC substitutes. Here we provide a protocol to image the cSMAC in its cellular context at the interface between a T cell and an APC. Super resolution stimulated emission depletion microscopy (STED) was utilized to determine the localization of LAT, that of its active, phosphorylated form and its entire pool. Agonist peptide-loaded APCs were incubated with TCR transgenic CD4+ T cells for 4.5 min before fixation and antibody staining. Fixed cell couples were imaged using a 100x 1.4 NA objective on a Leica SP8 AOBS confocal laser scanning microscope. LAT clustered in multiple supramolecular complexes and their number and size distributions were determined. Using this protocol, cSMAC properties in its cellular context at the interface between a T cell and an APC could be quantified.

11.
Nat Chem ; 12(12): 1150-1156, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33219362

RESUMEN

The creation of efficient artificial systems that mimic natural photosynthesis represents a key current challenge. Here, we describe a high-performance recyclable photocatalytic core-shell nanofibre system that integrates a cobalt catalyst and a photosensitizer in close proximity for hydrogen production from water using visible light. The composition, microstructure and dimensions-and thereby the catalytic activity-of the nanofibres were controlled through living crystallization-driven self-assembly. In this seeded growth strategy, block copolymers with crystallizable core-forming blocks and functional coronal segments were coassembled into low-dispersity, one-dimensional architectures. Under optimized conditions, the nanofibres promote the photocatalytic production of hydrogen from water with an overall quantum yield for solar energy conversion to hydrogen gas of ~4.0% (with a turnover number of >7,000 over 5 h, a frequency of >1,400 h-1 and a H2 production rate of >0.327 µmol h-1 with 1.34 µg of catalytic polymer (that is, >244,300 µmol h-1 g-1 of catalytic polymer)).

12.
J Cereb Blood Flow Metab ; 39(9): 1803-1817, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-29651914

RESUMEN

Cerebral artery hypoperfusion may provide the basis for linking ischemic stroke with hypertension. Brain hypoperfusion may induce hypertension that may serve as an auto-protective mechanism to prevent ischemic stroke. We hypothesised that hypertension is caused by remodelling of the cerebral arteries, which is triggered by inflammation. We used a congenital rat model of hypertension and examined age-related changes in gene expression of the cerebral arteries using RNA sequencing. Prior to hypertension, we found changes in signalling pathways associated with the immune system and fibrosis. Validation studies using second harmonics generation microscopy revealed upregulation of collagen type I and IV in both tunica externa and media. These changes in the extracellular matrix of cerebral arteries pre-empted hypertension accounting for their increased stiffness and resistance, both potentially conducive to stroke. These data indicate that inflammatory driven cerebral artery remodelling occurs prior to the onset of hypertension and may be a trigger elevating systemic blood pressure in genetically programmed hypertension.


Asunto(s)
Arterias Cerebrales/fisiopatología , Hipertensión/genética , Inflamación/genética , Transcriptoma , Animales , Arterias Cerebrales/metabolismo , Circulación Cerebrovascular , Hipertensión/complicaciones , Hipertensión/congénito , Hipertensión/fisiopatología , Inflamación/complicaciones , Inflamación/fisiopatología , Masculino , Ratas , Accidente Cerebrovascular/etiología , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/fisiopatología , Activación Transcripcional
13.
Elife ; 82019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31663508

RESUMEN

Supramolecular signaling assemblies are of interest for their unique signaling properties. A µm scale signaling assembly, the central supramolecular signaling cluster (cSMAC), forms at the center of the interface of T cells activated by antigen-presenting cells. We have determined that it is composed of multiple complexes of a supramolecular volume of up to 0.5 µm3 and associated with extensive membrane undulations. To determine cSMAC function, we have systematically manipulated the localization of three adaptor proteins, LAT, SLP-76, and Grb2. cSMAC localization varied between the adaptors and was diminished upon blockade of the costimulatory receptor CD28 and deficiency of the signal amplifying kinase Itk. Reconstitution of cSMAC localization restored IL-2 secretion which is a key T cell effector function as dependent on reconstitution dynamics. Our data suggest that the cSMAC enhances early signaling by facilitating signaling interactions and attenuates signaling thereafter through sequestration of a more limited set of signaling intermediates.


Cells receive dozens of signals at different times and in different places. Integrating incoming information and deciding how to respond is no easy task. Signaling molecules on the cell surface pass messages inwards using chemical messengers that interact in complicated networks within the cell. One way to unravel the complexity of these networks is to look at specific groups of signaling molecules in test tubes to see how they interact. But the interior of a living cell is a very different environment. Molecules inside cells are tightly packed and, under certain conditions, they interact with each other by the thousands. They form structures known as 'supramolecular complexes', which changes their behavior. One such supramolecular complex is the 'central supramolecular activation cluster', or cSMAC for short. It forms under the surface of immune cells called T cells when they are getting ready to fight an infection. Under the microscope, the cSMAC looks like the bullseye of a dartboard, forming a crowd of signaling molecules at the center of the interface between the T cell and another cell. Its exact role is not clear, but evidence suggests it helps to start and stop the signals that switch T cells on. The cSMAC contains two key protein adaptors called LAT and SLP-76 that help to hold the structure together. So, to find out what the cSMAC does, Clark et al. genetically modified these adaptors to gain control over when the cSMAC forms. Clark et al. examined mouse T cells using super-resolution microscopy and electron microscopy, watching as other immune cells delivered the signal to switch on. As the T cells started to activate, the composition of the cSMAC changed. In the first two minutes after the cells started activating, the cSMAC included a large number of different components. This made T cell activation more efficient, possibly because the supramolecular complex was helping the network of signals to interact. Later, the cSMAC started to lose many of these components. Separating components may have helped to stop the activation signals. Understanding how T cells activate could lead to the possibility of turning them on or off in immune-related diseases. But these findings are not just relevant to immune cells. Other cells also use supramolecular complexes to control their signaling. Investigating how these complexes change over time could help us to understand how other cell types make decisions.


Asunto(s)
Células Presentadoras de Antígenos/fisiología , Comunicación Celular , Interleucina-2/metabolismo , Linfocitos T/fisiología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Antígenos CD28/metabolismo , Células Cultivadas , Proteína Adaptadora GRB2/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Fosfoproteínas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo
14.
ACS Chem Neurosci ; 10(3): 1240-1250, 2019 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-30346718

RESUMEN

There is now crucial medical importance placed on understanding the role of early stage, subvisible protein aggregation, particularly in neurodegenerative disease. While there are strategies for detecting such aggregates in vitro, there is no approach at present that can detect these toxic species associated with cells and specific subcellular compartments. We have exploited excitation-energy-dependent fluorescence edge-shift of recombinant protein labeled with a molecular beacon, to provide a sensitive read out for the presence of subvisible protein aggregates. To demonstrate the potential utility of the approach, we examine the major peptide associated with the initiation of Alzheimer's disease, amyloid ß-protein (Aß) at a patho-physiologically relevant concentration in mouse cortical neurons. Using our approach, we find preliminary evidence that subvisible Aß aggregates are detected at specific subcellular regions and that neurons drive the formation of specific Aß aggregate conformations. These findings therefore demonstrate the potential of a novel fluorescence-based approach for detecting and imaging protein aggregates in a cellular context, which can be used to sensitively probe the association of early stage toxic protein aggregates within subcellular compartments.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/metabolismo , Neuronas/metabolismo , Agregación Patológica de Proteínas/diagnóstico por imagen , Agregación Patológica de Proteínas/metabolismo , Animales , Células Cultivadas , Dispersión Dinámica de Luz , Ratones , Microscopía Fluorescente , Imagen Molecular , Análisis Espectral
15.
Biol Open ; 7(3)2018 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-29535103

RESUMEN

Changes in chromatin structure are key determinants of genomic responses. Thus, methods that enable such measurements are instrumental for investigating genome regulation and function. Here, we report further developments and validation of a streamlined method of histone-based fluorescence lifetime imaging microscopy (FLIM) that robustly detects chromatin compaction states in fixed and live cells, in 2D and 3D. We present a quality-controlled and detailed method that is simpler and faster than previous methods, and uses FLIMfit open-source software. We demonstrate the versatility of this chromatin FLIM through its combination with immunofluorescence and implementation in immortalised and primary cells. We applied this method to investigate the regulation of chromatin organisation after genotoxic stress and provide new insights into the role of ATM in controlling chromatin structure independently of DNA damage. Collectively, we present an adaptable chromatin FLIM method for examining chromatin structure and establish its utility in mammalian cells.

16.
Sci Rep ; 7: 41327, 2017 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-28112266

RESUMEN

Light-induced shape transformations represent a fundamental step towards the emergence of adaptive materials exhibiting photomechanical behaviours. Although a range of covalent azobenzene-based photoactive materials has been demonstrated, the use of dynamic photoisomerization in mesostructured soft solids involving non-covalent co-assembly has received little attention. Here we prepare discrete micrometre-sized hydrated particles of a hexagonally ordered polyelectrolyte-surfactant mesophase based on the electrostatically induced co-assembly of poly(sodium acrylate) (PAA) and trans-azobenzene trimethylammonium bromide (trans-azoTAB), and demonstrate unusual non-equilibrium substrate-mediated shape transformations to complex multipodal microarchitectures under continuous blue light. The microparticles spontaneously sequester molecular dyes, functional enzymes and oligonucleotides, and undergo self-division when transformed to the cis state under UV irradiation. Our results illustrate that weak bonding interactions in polyelectrolyte-azobenzene surfactant mesophases can be exploited for photo-induced long-range molecular motion, and highlight how dynamic shape transformations and autonomous division can be activated by spatially confining azobenzene photomechanics in condensed microparticulate materials.

17.
Nat Cell Biol ; 19(12): 1389-1399, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29131140

RESUMEN

Re-establishment of nuclear structure and chromatin organization after cell division is integral for genome regulation or development and is frequently altered during cancer progression. The mechanisms underlying chromatin expansion in daughter cells remain largely unclear. Here, we describe the transient formation of nuclear actin filaments (F-actin) during mitotic exit. These nuclear F-actin structures assemble in daughter cell nuclei and undergo dynamic reorganization to promote nuclear protrusions and volume expansion throughout early G1 of the cell cycle. Specific inhibition of this nuclear F-actin assembly impaired nuclear expansion and chromatin decondensation after mitosis and during early mouse embryonic development. Biochemical screening for mitotic nuclear F-actin interactors identified the actin-disassembling factor cofilin-1. Optogenetic regulation of cofilin-1 revealed its critical role for controlling timing, turnover and dynamics of F-actin assembly inside daughter cell nuclei. Our findings identify a cell-cycle-specific and spatiotemporally controlled form of nuclear F-actin that reorganizes the mammalian nucleus after mitosis.


Asunto(s)
Actinas/metabolismo , Cromatina/metabolismo , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Actinas/química , Animales , Blastocisto/metabolismo , Núcleo Celular/metabolismo , Tamaño del Núcleo Celular , Ensamble y Desensamble de Cromatina/fisiología , Cofilina 1/genética , Cofilina 1/metabolismo , Fase G1/fisiología , Ratones , Mitosis/fisiología , Modelos Biológicos , Células 3T3 NIH , Optogenética , Multimerización de Proteína
18.
J Vis Exp ; (119)2017 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-28190060

RESUMEN

We present an open source high content analysis instrument utilizing automated fluorescence lifetime imaging (FLIM) for assaying protein interactions using Förster resonance energy transfer (FRET) based readouts of fixed or live cells in multiwell plates. This provides a means to screen for cell signaling processes read out using intramolecular FRET biosensors or intermolecular FRET of protein interactions such as oligomerization or heterodimerization, which can be used to identify binding partners. We describe here the functionality of this automated multiwell plate FLIM instrumentation and present exemplar data from our studies of HIV Gag protein oligomerization and a time course of a FRET biosensor in live cells. A detailed description of the practical implementation is then provided with reference to a list of hardware components and a description of the open source data acquisition software written in µManager. The application of FLIMfit, an open source MATLAB-based client for the OMERO platform, to analyze arrays of multiwell plate FLIM data is also presented. The protocols for imaging fixed and live cells are outlined and a demonstration of an automated multiwell plate FLIM experiment using cells expressing fluorescent protein-based FRET constructs is presented. This is complemented by a walk-through of the data analysis for this specific FLIM FRET data set.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Microscopía Fluorescente/métodos , Animales , Técnicas Biosensibles , Células COS , Chlorocebus aethiops , Humanos , Imagen Óptica , Programas Informáticos , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/química
19.
ACS Nano ; 11(8): 7901-7914, 2017 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-28686416

RESUMEN

An ability to organize and encapsulate multiple active proteins into defined objects and spaces at the nanoscale has potential applications in biotechnology, nanotechnology, and synthetic biology. Previously, we have described the design, assembly, and characterization of peptide-based self-assembled cages (SAGEs). These ≈100 nm particles comprise thousands of copies of de novo designed peptide-based hubs that array into a hexagonal network and close to give caged structures. Here, we show that, when fused to the designed peptides, various natural proteins can be co-assembled into SAGE particles. We call these constructs pSAGE for protein-SAGE. These particles tolerate the incorporation of multiple copies of folded proteins fused to either the N or the C termini of the hubs, which modeling indicates form the external and internal surfaces of the particles, respectively. Up to 15% of the hubs can be functionalized without compromising the integrity of the pSAGEs. This corresponds to hundreds of copies giving mM local concentrations of protein in the particles. Moreover, and illustrating the modularity of the SAGE system, we show that multiple different proteins can be assembled simultaneously into the same particle. As the peptide-protein fusions are made via recombinant expression of synthetic genes, we envisage that pSAGE systems could be developed modularly to actively encapsulate or to present a wide variety of functional proteins, allowing them to be developed as nanoreactors through the immobilization of enzyme cascades or as vehicles for presenting whole antigenic proteins as synthetic vaccine platforms.


Asunto(s)
Péptidos/química , Proteínas/química , Biología Sintética/métodos , Biotecnología , Nanotecnología/métodos , Pliegue de Proteína
20.
Cell Rep ; 15(8): 1648-59, 2016 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-27184855

RESUMEN

Collagen is the most abundant protein in the animal kingdom. It is of fundamental importance during development for cell differentiation and tissue morphogenesis as well as in pathological processes such as fibrosis and cancer cell migration. However, our understanding of the mechanisms of procollagen secretion remains limited. Here, we show that TFG organizes transitional ER (tER) and ER exit sites (ERESs) into larger structures. Depletion of TFG results in dispersion of tER elements that remain associated with individual ER-Golgi intermediate compartments (ERGICs) as largely functional ERESs. We show that TFG is not required for the transport and packaging of small soluble cargoes but is necessary for the export of procollagen from the ER. Our work therefore suggests a key relationship between the structure and function of ERESs and a central role for TFG in optimizing COPII assembly for procollagen export.


Asunto(s)
Colágeno/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas/metabolismo , Aparato de Golgi/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Manosidasas/metabolismo , Modelos Biológicos , Transporte de Proteínas , ARN Interferente Pequeño/metabolismo , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA