RESUMEN
Two-dimensional transition metal dichalcogenide nanoribbons are touted as the future extreme device downscaling for advanced logic and memory devices but remain a formidable synthetic challenge. Here, we demonstrate a ledge-directed epitaxy (LDE) of dense arrays of continuous, self-aligned, monolayer and single-crystalline MoS2 nanoribbons on ß-gallium (III) oxide (ß-Ga2O3) (100) substrates. LDE MoS2 nanoribbons have spatial uniformity over a long range and transport characteristics on par with those seen in exfoliated benchmarks. Prototype MoS2-nanoribbon-based field-effect transistors exhibit high on/off ratios of 108 and an averaged room temperature electron mobility of 65 cm2 V-1 s-1. The MoS2 nanoribbons can be readily transferred to arbitrary substrates while the underlying ß-Ga2O3 can be reused after mechanical exfoliation. We further demonstrate LDE as a versatile epitaxy platform for the growth of p-type WSe2 nanoribbons and lateral heterostructures made of p-WSe2 and n-MoS2 nanoribbons for futuristic electronics applications.
RESUMEN
Recently there have been many research breakthroughs in two-dimensional (2D) materials including graphene, boron nitride (h-BN), black phosphors (BPs), and transition-metal dichalcogenides (TMDCs). The unique electrical, optical, and thermal properties in 2D materials are associated with their strictly defined low dimensionalities. These materials provide a wide range of basic building blocks for next-generation electronics. The chemical vapor deposition (CVD) technique has shown great promise to generate high-quality TMDC layers with scalable size, controllable thickness, and excellent electronic properties suitable for both technological applications and fundamental sciences. The capability to precisely engineer 2D materials by chemical approaches has also given rise to fascinating new physics, which could lead to exciting new applications. In this Review, we introduce the latest development of TMDC synthesis by CVD approaches and provide further insight for the controllable and reliable synthesis of atomically thin TMDCs. Understanding of the vapor-phase growth mechanism of 2D TMDCs could benefit the formation of complicated heterostructures and novel artificial 2D lattices.
RESUMEN
Epitaxial growth of 2D transition metal dichalcogenides (TMDCs) on sapphire substrates has been recognized as a pivotal method for producing wafer-scale single-crystal films. Both step-edges and symmetry of substrate surfaces have been proposed as controlling factors. However, the underlying fundamental still remains elusive. In this work, through the molybdenum disulfide (MoS2) growth on C/M sapphire, it is demonstrated that controlling the sulfur evaporation rate is crucial for dictating the switch between atomic-edge guided epitaxy and van der Waals epitaxy. Low-concentration sulfur condition preserves O/Al-terminated step edges, fostering atomic-edge epitaxy, while high-concentration sulfur leads to S-terminated edges, preferring van der Waals epitaxy. These experiments reveal that on a 2 in. wafer, the van der Waals epitaxy mechanism achieves better control in MoS2 alignment (≈99%) compared to the step edge mechanism (<85%). These findings shed light on the nuanced role of atomic-level thermodynamics in controlling nucleation modes of TMDCs, thereby providing a pathway for the precise fabrication of single-crystal 2D materials on a wafer scale.
RESUMEN
Growing continuous monolayer films of transition-metal dichalcogenides (TMDs) without the disruption of grain boundaries is essential to realize the full potential of these materials for future electronics and optoelectronics, but it remains a formidable challenge. It is generally believed that controlling the TMDs orientations on epitaxial substrates stems from matching the atomic registry, symmetry, and penetrable van der Waals forces. Interfacial reconstruction within the exceedingly narrow substrate-epilayer gap has been anticipated. However, its role in the growth mechanism has not been intensively investigated. Here, we report the experimental conformation of an interfacial reconstructed (IR) layer within the substrate-epilayer gap. Such an IR layer profoundly impacts the orientations of nucleating TMDs domains and, thus, affects the materials' properties. These findings provide deeper insights into the buried interface that could have profound implications for the development of TMD-based electronics and optoelectronics.
RESUMEN
Three-dimensional monolithic integration of memory devices with logic transistors is a frontier challenge in computer hardware. This integration is essential for augmenting computational power concurrent with enhanced energy efficiency in big data applications such as artificial intelligence. Despite decades of efforts, there remains an urgent need for reliable, compact, fast, energy-efficient and scalable memory devices. Ferroelectric field-effect transistors (FE-FETs) are a promising candidate, but requisite scalability and performance in a back-end-of-line process have proven challenging. Here we present back-end-of-line-compatible FE-FETs using two-dimensional MoS2 channels and AlScN ferroelectric materials, all grown via wafer-scalable processes. A large array of FE-FETs with memory windows larger than 7.8 V, ON/OFF ratios greater than 107 and ON-current density greater than 250 µA um-1, all at ~80 nm channel length are demonstrated. The FE-FETs show stable retention up to 10 years by extension, and endurance greater than 104 cycles in addition to 4-bit pulse-programmable memory features, thereby opening a path towards the three-dimensional heterointegration of a two-dimensional semiconductor memory with silicon complementary metal-oxide-semiconductor logic.
RESUMEN
Two-dimensional (2D) semiconducting monolayers such as transition metal dichalcogenides (TMDs) are promising channel materials to extend Moore's Law in advanced electronics. Synthetic TMD layers from chemical vapor deposition (CVD) are scalable for fabrication but notorious for their high defect densities. Therefore, innovative endeavors on growth reaction to enhance their quality are urgently needed. Here, we report that the hydroxide W species, an extremely pure vapor phase metal precursor form, is very efficient for sulfurization, leading to about one order of magnitude lower defect density compared to those from conventional CVD methods. The field-effect transistor (FET) devices based on the proposed growth reach a peak electron mobility ~200 cm2/Vs (~800 cm2/Vs) at room temperature (15 K), comparable to those from exfoliated flakes. The FET device with a channel length of 100 nm displays a high on-state current of ~400 µA/µm, encouraging the industrialization of 2D materials.
RESUMEN
Van der Waals heterostructures consisting of 2D semiconductors and conjugated molecules are of increasing interest because of the prospect of a synergistic enhancement of (opto)electronic properties. In particular, perylenetetracarboxylic dianhydride (PTCDA) on monolayer (ML)-MoS2 has been identified as promising candidate and a staggered type-II energy level alignment and excited state interfacial charge transfer have been proposed. In contrast, it is here found with inverse and direct angle resolved photoelectron spectroscopy that PTCDA/ML-MoS2 supported by insulating sapphire exhibits a straddling type-I level alignment, with PTCDA having the wider energy gap. Photoluminescence (PL) and sub-picosecond transient absorption measurements reveal that resonance energy transfer, i.e., electron-hole pair (exciton) transfer, from PTCDA to ML-MoS2 occurs on a sub-picosecond time scale. This gives rise to an enhanced PL yield from ML-MoS2 in the heterostructure and an according overall modulation of the photoresponse. These results underpin the importance of a precise knowledge of the interfacial electronic structure in order to understand excited state dynamics and to devise reliable design strategies for optimized optoelectronic functionality in van der Waals heterostructures.
RESUMEN
A comprehensive understanding of the energy level alignment mechanisms between two-dimensional (2D) semiconductors and electrodes is currently lacking, but it is a prerequisite for tailoring the interface electronic properties to the requirements of device applications. Here, we use angle-resolved direct and inverse photoelectron spectroscopy to unravel the key factors that determine the level alignment at interfaces between a monolayer of the prototypical 2D semiconductor MoS2 and conductor, semiconductor, and insulator substrates. For substrate work function (Φsub) values below 4.5 eV we find that Fermi level pinning occurs, involving electron transfer to native MoS2 gap states below the conduction band. For Φsub above 4.5 eV, vacuum level alignment prevails but the charge injection barriers do not strictly follow the changes of Φsub as expected from the Schottky-Mott rule. Notably, even the trends of the injection barriers for holes and electrons are different. This is caused by the band gap renormalization of monolayer MoS2 by dielectric screening, which depends on the dielectric constant (εr) of the substrate. Based on these observations, we introduce an expanded Schottky-Mott rule that accounts for band gap renormalization by εr -dependent screening and show that it can accurately predict charge injection barriers for monolayer MoS2. It is proposed that the formalism of the expanded Schottky-Mott rule should be universally applicable for 2D semiconductors, provided that material-specific experimental benchmark data are available.
RESUMEN
Electronic charge rearrangement between components of a heterostructure is the fundamental principle to reach the electronic ground state. It is acknowledged that the density of state distribution of the components governs the amount of charge transfer, but a notable dependence on temperature is not yet considered, particularly for weakly interacting systems. Here, it is experimentally observed that the amount of ground-state charge transfer in a van der Waals heterostructure formed by monolayer MoS2 sandwiched between graphite and a molecular electron acceptor layer increases by a factor of 3 when going from 7 K to room temperature. State-of-the-art electronic structure calculations of the full heterostructure that accounts for nuclear thermal fluctuations reveal intracomponent electron-phonon coupling and intercomponent electronic coupling as the key factors determining the amount of charge transfer. This conclusion is rationalized by a model applicable to multicomponent van der Waals heterostructures.
RESUMEN
High-resolution scanning transmission electron microscopy (HR-STEM) with spherical aberration correction enables researchers to peer into two-dimensional (2D) materials and correlate the material properties with those of single atoms. The maximum intensity of corrected electron beam is confined in the area having sub-angstrom size. Meanwhile, the residual threefold astigmatism of the electron probe implies a triangular shape distribution of the intensity, whereas its tails overlap and thus interact with several atomic species simultaneously. The result is the resonant modulation of contrast that interferes the determination of phase transition of 2D materials. Here, we theoretically reveal and experimentally determine the origin of resonant modulation of contrast and its unintended impact on violating the power-law dependence of contrast on coordination modes between transition metal and chalcogenide atoms. The finding illuminates the correlation between atomic contrast, spatially inequivalent chalcogenide orientation, and residual threefold astigmatism on determining the atomic structure of emerging 2D materials.
RESUMEN
Skin-mountable microelectronics are garnering substantial interest for various promising applications including human-machine interfaces, biointegrated devices, and personalized medicine. However, it remains a critical challenge to develop e-skins to mimic the human somatosensory system in full working range. Here, we present a multifunctional e-skin system with a heterostructured configuration that couples vinyl-hybrid-silica nanoparticle (VSNP)-modified polyacrylamide (PAM) hydrogel with two-dimensional (2D) MXene through nano-bridging layers of polypyrrole nanowires (PpyNWs) at the interfaces, featuring high toughness and low hysteresis, in tandem with controlled crack generation and distribution. The multidimensional configurations endow the e-skin with an extraordinary working range (2800%), ultrafast responsiveness (90 ms) and resilience (240 ms), good linearity (800%), tunable sensing mechanisms, and excellent reproducibility. In parallel, this e-skin platform is capable of detecting, quantifying, and remotely monitoring stretching motions in multiple dimensions, tactile pressure, proximity sensing, and variations in temperature and light, establishing a promising platform for next-generation smart flexible electronics.
RESUMEN
2D transition metal dichalcogenide (TMD) layered materials are promising for future electronic and optoelectronic applications. The realization of large-area electronics and circuits strongly relies on wafer-scale, selective growth of quality 2D TMDs. Here, a scalable method, namely, metal-guided selective growth (MGSG), is reported. The success of control over the transition-metal-precursor vapor pressure, the first concurrent growth of two dissimilar monolayer TMDs, is demonstrated in conjunction with lateral or vertical TMD heterojunctions at precisely desired locations over the entire wafer in a single chemical vapor deposition (VCD) process. Owing to the location selectivity, MGSG allows the growth of p- and n-type TMDs with spatial homogeneity and uniform electrical performance for circuit applications. As a demonstration, the first bottom-up complementary metal-oxide-semiconductor inverter based on p-type WSe2 and n-type MoSe2 is achieved, which exhibits a high and reproducible voltage gain of 23 with little dependence on position.
RESUMEN
An all-acceptor napthalenediimide-bithiazole-based co-polymer, P(NDI2OD-BiTz), was synthesized and characterized for application in thin-film transistors. Density functional theory calculations point to an optimal perpendicular dihedral angle of 90° between acceptor units along isolated polymer chains; yet optimized transistors yield electron mobility of 0.11 cm2/(V s) with the use of a zwitterionic naphthalene diimide interlayer. Grazing incidence X-ray diffraction measurements of annealed films reveal that P(NDI2OD-BiTz) adopts a highly ordered edge-on orientation, exactly opposite to similar bithiophene analogs. This report highlights an NDI and thiazole all-acceptor polymer and demonstrates high electron mobility despite its nonplanar backbone conformation.
RESUMEN
Two-dimensional (2D) transition-metal dichalcogenide (TMDC) semiconductors are important for next-generation electronics and optoelectronics. Given the difficulty in growing large single crystals of 2D TMDC materials, understanding the factors affecting the seed formation and orientation becomes an important issue for controlling the growth. Here, we systematically study the growth of molybdenum disulfide (MoS2) monolayer on c-plane sapphire with chemical vapor deposition to discover the factors controlling their orientation. We show that the concentration of precursors, that is, the ratio between sulfur and molybdenum oxide (MoO3), plays a key role in the size and orientation of seeds, subsequently controlling the orientation of MoS2 monolayers. High S/MoO3 ratio is needed in the early stage of growth to form small seeds that can align easily to the substrate lattice structures, while the ratio should be decreased to enlarge the size of the monolayer at the next stage of the lateral growth. Moreover, we show that the seeds are actually crystalline MoS2 layers as revealed by high-resolution transmission electron microscopy. There exist two preferred orientations (0° or 60°) registered on sapphire, confirmed by our density functional theory simulation. This report offers a facile technique to grow highly aligned 2D TMDCs and contributes to knowledge advancement in growth mechanism.