Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 18(9): e3000823, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32925901

RESUMEN

Global change causes widespread decline of coral reefs. In order to counter the anticipated disappearance of coral reefs by the end of this century, many initiatives are emerging, including creation of marine protected areas (MPAs), reef restoration projects, and assisted evolution initiatives. Such efforts, although critically important, are locally constrained. We propose to build a "Noah's Ark" biological repository for corals that taps into the network of the world's public aquaria and coral reef scientists. Public aquaria will serve not only as a reservoir for the purpose of conservation, restoration, and research of reef-building corals but also as a laboratory for the implementation of operations for the selection of stress-resilient and resistant genotypes. The proposed project will provide a global dimension to coral reef education and protection as a result of the involvement of a network of public and private aquaria.


Asunto(s)
Antozoos , Conservación de los Recursos Naturales/métodos , Arrecifes de Coral , Animales , Biodiversidad
2.
J Theor Biol ; 561: 111382, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36610694

RESUMEN

Calcification in photosynthetic scleractinian corals is a complicated process that involves many different biological, chemical, and physical sub-processes that happen within and around the coral tissue. Identifying and quantifying the role of separate processes in vivo or in vitro is difficult or not possible. A computational model can facilitate this research by simulating the sub-processes independently. This study presents a spatio-temporal model of the calcification physiology, which is based on processes that are considered essential for calcification: respiration, photosynthesis, Ca2+-ATPase, carbonic anhydrase. The model is used to test different hypotheses considering ion transport across the calicoblastic cells and Light Enhanced Calcification (LEC). It is also used to quantify the effect of ocean acidification (OA) on the Extracellular Calcifying Medium (ECM) and ATP-consumption of Ca2+-ATPase. It was able to reproduce the experimental data of three separate studies and finds that paracellular transport plays a minor role compared to transcellular transport. In the model, LEC results from increased Ca2+-ATPase activity in combination with increased metabolism. Implementing OA increases the concentration of CO2 throughout the entire tissue, thereby increasing the availability of CO3- in the ECM. As a result, the model finds that calcification becomes more energy-demanding and the calcification rate increases.


Asunto(s)
Antozoos , Animales , Antozoos/fisiología , Concentración de Iones de Hidrógeno , Agua de Mar , Calcificación Fisiológica/fisiología , Fotosíntesis , Arrecifes de Coral
3.
Mol Biol Evol ; 38(9): 3543-3555, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-33871620

RESUMEN

Corals build the structural foundation of coral reefs, one of the most diverse and productive ecosystems on our planet. Although the process of coral calcification that allows corals to build these immense structures has been extensively investigated, we still know little about the evolutionary processes that allowed the soft-bodied ancestor of corals to become the ecosystem builders they are today. Using a combination of phylogenomics, proteomics, and immunohistochemistry, we show that scleractinian corals likely acquired the ability to calcify sometime between ∼308 and ∼265 Ma through a combination of lineage-specific gene duplications and the co-option of existing genes to the calcification process. Our results suggest that coral calcification did not require extensive evolutionary changes, but rather few coral-specific gene duplications and a series of small, gradual optimizations of ancestral proteins and their co-option to the calcification process.


Asunto(s)
Antozoos , Animales , Antozoos/genética , Antozoos/metabolismo , Calcificación Fisiológica/genética , Arrecifes de Coral , Ecosistema , Filogenia
4.
Appl Environ Microbiol ; 88(6): e0234021, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35108095

RESUMEN

Gorgonians are important habitat-providing species in the Mediterranean Sea, but their populations are declining due to microbial diseases and repeated mass mortality events caused by summer heat waves. Elevated seawater temperatures may impact the stress tolerance and disease resistance of gorgonians and lead to disturbances in their microbiota. However, our knowledge of the biological response of the gorgonian holobiont (i.e., the host and its microbiota) to thermal stress remains limited. Here, we investigated how the holobiont of two gorgonian species (Paramuricea clavata and Eunicella cavolini) are affected throughout a 7-week thermal stress event by following both the corals' physiology and the composition of their bacterial communities. We found that P. clavata was more sensitive to elevated seawater temperatures than E. cavolini, showing a greater loss in energy reserves, reduced feeding ability, and partial mortality. This lower thermotolerance may be linked to the ∼20× lower antioxidant defense capacity in P. clavata compared with E. cavolini. In the first 4 weeks of thermal stress, we also observed minor shifts in the microbiota of both species, suggesting that the microbiota likely plays a limited role in thermal acclimation of the holobiont. However, major stochastic changes occurred later on in some colonies, which were of a transient nature in E. cavolini, but were linked to partial colony mortality in P. clavata. Overall, our results show significant, but differential, effects of thermal stress on the holobionts of both E. cavolini and P. clavata and predict potentially severe impacts on gorgonian populations under future climate scenarios. IMPORTANCE In the Mediterranean Sea, the tree-shaped gorgonian corals form large forests that provide a place to live for many species. Because of this important ecological role, it is crucial to understand how common habitat-forming gorgonians, like Eunicella cavolini and Paramuricea clavata, are affected by high seawater temperatures that are expected in the future due to climate change. We found that both species lost biomass, but P. clavata was more affected, being also unable to feed and showing signs of mortality. The microbiota of both gorgonians also changed substantively under high temperatures. Although this could be linked to partial colony mortality in P. clavata, the changes were temporary in E. cavolini. The overall higher resistance of E. cavolini may be related to its much higher antioxidant defense levels than P. clavata. Climate change may thus have severe impacts on gorgonian populations and the habitats they provide.


Asunto(s)
Antozoos , Microbiota , Animales , Antozoos/microbiología , Bacterias/genética , Mar Mediterráneo , Agua de Mar/microbiología
5.
PLoS Biol ; 17(9): e3000483, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31545807

RESUMEN

Coral reefs are the most diverse habitats in the marine realm. Their productivity, structural complexity, and biodiversity critically depend on ecosystem services provided by corals that are threatened because of climate change effects-in particular, ocean warming and acidification. The coral holobiont is composed of the coral animal host, endosymbiotic dinoflagellates, associated viruses, bacteria, and other microeukaryotes. In particular, the mandatory photosymbiosis with microalgae of the family Symbiodiniaceae and its consequences on the evolution, physiology, and stress resilience of the coral holobiont have yet to be fully elucidated. The functioning of the holobiont as a whole is largely unknown, although bacteria and viruses are presumed to play roles in metabolic interactions, immunity, and stress tolerance. In the context of climate change and anthropogenic threats on coral reef ecosystems, the Tara Pacific project aims to provide a baseline of the "-omics" complexity of the coral holobiont and its ecosystem across the Pacific Ocean and for various oceanographically distinct defined areas. Inspired by the previous Tara Oceans expeditions, the Tara Pacific expedition (2016-2018) has applied a pan-ecosystemic approach on coral reefs throughout the Pacific Ocean, drawing an east-west transect from Panama to Papua New Guinea and a south-north transect from Australia to Japan, sampling corals throughout 32 island systems with local replicates. Tara Pacific has developed and applied state-of-the-art technologies in very-high-throughput genetic sequencing and molecular analysis to reveal the entire microbial and chemical diversity as well as functional traits associated with coral holobionts, together with various measures on environmental forcing. This ambitious project aims at revealing a massive amount of novel biodiversity, shedding light on the complex links between genomes, transcriptomes, metabolomes, organisms, and ecosystem functions in coral reefs and providing a reference of the biological state of modern coral reefs in the Anthropocene.


Asunto(s)
Antozoos/microbiología , Arrecifes de Coral , Expediciones , Microbiota , Animales , Metabolómica , Metagenómica , Océano Pacífico , Simbiosis
6.
Microb Ecol ; 75(1): 274-288, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28681143

RESUMEN

Populations of key benthic habitat-forming octocoral species have declined significantly in the Mediterranean Sea due to mass mortality events caused by microbial disease outbreaks linked to high summer seawater temperatures. Recently, we showed that the microbial communities of these octocorals are relatively structured; however, our knowledge on the seasonal dynamics of these microbiomes is still limited. To investigate their seasonal stability, we collected four soft gorgonian species (Eunicella singularis, Eunicella cavolini, Eunicella verrucosa and Leptogorgia sarmentosa) and the precious red coral (Corallium rubrum) from two coastal locations with different terrestrial impact levels in the Mediterranean Sea, and used next-generation amplicon sequencing of the 16S rRNA gene. The microbiomes of all soft gorgonian species were dominated by the same 'core microbiome' bacteria belonging to the Endozoicomonas and the Cellvibrionales clade BD1-7, whereas the red coral microbiome was primarily composed of 'core' Spirochaetes, Oceanospirillales ME2 and Parcubacteria. The associations with these bacterial taxa were relatively consistent over time at each location for each octocoral species. However, differences in microbiome composition and seasonal dynamics were observed between locations and could primarily be attributed to locally variant bacteria. Overall, our data provide further evidence of the intricate symbiotic relationships that exist between Mediterranean octocorals and their associated microbes, which are ancient and highly conserved over both space and time, and suggest regulation of the microbiome composition by the host, depending on local conditions.


Asunto(s)
Antozoos/microbiología , Bacterias/aislamiento & purificación , Microbiota , Animales , Antozoos/fisiología , Bacterias/clasificación , Bacterias/genética , Fenómenos Fisiológicos Bacterianos , Secuenciación de Nucleótidos de Alto Rendimiento , Mar Mediterráneo , Filogenia , Estaciones del Año , Agua de Mar , Simbiosis
7.
J Theor Biol ; 424: 26-36, 2017 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-28476563

RESUMEN

Critical to determining vulnerability or resilience of reef corals to Ocean Acidification (OA) is a clearer understanding of the extent to which corals can control carbonate chemistry in their Extracellular Calcifying Medium (ECM) where the CaCO3 skeleton is produced. Here, we employ a mathematical framework to calculate ECM aragonite saturation state (Ωarag.(ECM)) and carbonate system ion concentration using measurements of calcification rate, seawater characteristics (temperature, salinity and pH) and ECM pH (pH(ECM)). Our calculations of ECM carbonate chemistry at current-day seawater pH, indicate that Ωarag.(ECM) ranges from ∼10 to 38 (mean 20.41), i.e. about 5 to 6-fold higher than seawater. Accordingly, Dissolved Inorganic Carbon (DIC) and Total Alkalinity (TA) were calculated to be around 3 times higher in the ECM than in seawater. We also assessed the effects of acidification on ECM chemical properties of the coral Stylophora pistillata. At reduced seawater pH our calculations indicate that Ωarag.(ECM) remains almost constant. DIC(ECM) and TA(ECM) gradually increase as seawater pH declines, reaching values about 5 to 6-fold higher than in seawater, respectively for DIC and TA. We propose that these ECM characteristics buffer the effect of acidification and explain why certain corals continue to produce CaCO3 even when seawater chemistry is less favourable.


Asunto(s)
Antozoos/crecimiento & desarrollo , Calcificación Fisiológica/fisiología , Carbonato de Calcio/metabolismo , Simulación por Computador , Modelos Biológicos , Océanos y Mares , Animales , Concentración de Iones de Hidrógeno
8.
Microb Ecol ; 73(2): 466-478, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27726033

RESUMEN

Gorgonians are key habitat-forming species of Mediterranean benthic communities, but their populations have suffered from mass mortality events linked to high summer seawater temperatures and microbial disease. However, our knowledge on the diversity, dynamics and function of gorgonian-associated microbial communities is limited. Here, we analysed the spatial variability of the microbiomes of five sympatric gorgonian species (Eunicella singularis, Eunicella cavolini, Eunicella verrucosa, Leptogorgia sarmentosa and Paramuricea clavata), collected from the Mediterranean Sea over a scale of ∼1100 km, using next-generation amplicon sequencing of the 16S rRNA gene. The microbiomes of all gorgonian species were generally dominated by members of the genus Endozoicomonas, which were at very low abundance in the surrounding seawater. Although the composition of the core microbiome (operational taxonomic units consistently present in a species) was found to be unique for each host species, significant overlap was observed. These spatially consistent associations between gorgonians and their core bacteria suggest intricate symbiotic relationships and regulation of the microbiome composition by the host. At the same time, local variations in microbiome composition were observed. Functional predictive profiling indicated that these differences could be attributed to seawater pollution. Taken together, our data indicate that gorgonian-associated microbiomes are composed of spatially conserved bacteria (core microbiome members) and locally variant members, and that local pollution may influence these local associations, potentially impacting gorgonian health.


Asunto(s)
Antozoos/microbiología , Bacterias/clasificación , Microbiota , Animales , Bacterias/genética , Bacterias/aislamiento & purificación , Secuencia de Bases , Biodiversidad , Clasificación , Arrecifes de Coral , ADN Bacteriano/genética , Biblioteca de Genes , Mar Mediterráneo , Microbiota/genética , Filogenia , ARN Ribosómico 16S/genética , Estaciones del Año , Agua de Mar/microbiología , Especificidad de la Especie , Temperatura
9.
Mol Biol Evol ; 32(1): 44-62, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25246700

RESUMEN

Septate junctions (SJs) insure barrier properties and control paracellular diffusion of solutes across epithelia in invertebrates. However, the origin and evolution of their molecular constituents in Metazoa have not been firmly established. Here, we investigated the genomes of early branching metazoan representatives to reconstruct the phylogeny of the molecular components of SJs. Although Claudins and SJ cytoplasmic adaptor components appeared successively throughout metazoan evolution, the structural components of SJs arose at the time of Placozoa/Cnidaria/Bilateria radiation. We also show that in the scleractinian coral Stylophora pistillata, the structural SJ component Neurexin IV colocalizes with the cortical actin network at the apical border of the cells, at the place of SJs. We propose a model for SJ components in Cnidaria. Moreover, our study reveals an unanticipated diversity of SJ structural component variants in cnidarians. This diversity correlates with gene-specific expression in calcifying and noncalcifying tissues, suggesting specific paracellular pathways across the cell layers of these diploblastic animals.


Asunto(s)
Cnidarios/metabolismo , Células Epiteliales/fisiología , Eucariontes/citología , Uniones Intercelulares/metabolismo , Proteínas de Uniones Estrechas/genética , Animales , Cnidarios/genética , Biología Computacional/métodos , Eucariontes/genética , Eucariontes/metabolismo , Evolución Molecular , Genoma , Uniones Intercelulares/genética , Modelos Genéticos , Filogenia , Proteínas de Uniones Estrechas/metabolismo
10.
Proc Natl Acad Sci U S A ; 110(5): 1634-9, 2013 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-23277567

RESUMEN

Insight into the response of reef corals and other major marine calcifiers to ocean acidification is limited by a lack of knowledge about how seawater pH and carbonate chemistry impact the physiological processes that drive biomineralization. Ocean acidification is proposed to reduce calcification rates in corals by causing declines in internal pH at the calcifying tissue-skeleton interface where biomineralization takes place. Here, we performed an in vivo study on how partial-pressure CO(2)-driven seawater acidification impacts intracellular pH in coral calcifying cells and extracellular pH in the fluid at the tissue-skeleton interface [subcalicoblastic medium (SCM)] in the coral Stylophora pistillata. We also measured calcification in corals grown under the same conditions of seawater acidification by measuring lateral growth of colonies and growth of aragonite crystals under the calcifying tissue. Our findings confirm that seawater acidification decreases pH of the SCM, but this decrease is gradual relative to the surrounding seawater, leading to an increasing pH gradient between the SCM and seawater. Reductions in calcification rate, both at the level of crystals and whole colonies, were only observed in our lowest pH treatment when pH was significantly depressed in the calcifying cells in addition to the SCM. Overall, our findings suggest that reef corals may mitigate the effects of seawater acidification by regulating pH in the SCM, but they also highlight the role of calcifying cell pH homeostasis in determining the response of reef corals to changes in external seawater pH and carbonate chemistry.


Asunto(s)
Ácidos/química , Antozoos/fisiología , Calcificación Fisiológica , Agua de Mar/química , Animales , Antozoos/citología , Antozoos/crecimiento & desarrollo , Antozoos/metabolismo , Carbonato de Calcio/química , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Carbonatos/química , Carbonatos/metabolismo , Arrecifes de Coral , Cristalización , Concentración de Iones de Hidrógeno , Microscopía Confocal , Factores de Tiempo
11.
PLoS Genet ; 7(7): e1002187, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21811417

RESUMEN

Trophic endosymbiosis between anthozoans and photosynthetic dinoflagellates forms the key foundation of reef ecosystems. Dysfunction and collapse of symbiosis lead to bleaching (symbiont expulsion), which is responsible for the severe worldwide decline of coral reefs. Molecular signals are central to the stability of this partnership and are therefore closely related to coral health. To decipher inter-partner signaling, we developed genomic resources (cDNA library and microarrays) from the symbiotic sea anemone Anemonia viridis. Here we describe differential expression between symbiotic (also called zooxanthellate anemones) or aposymbiotic (also called bleached) A. viridis specimens, using microarray hybridizations and qPCR experiments. We mapped, for the first time, transcript abundance separately in the epidermal cell layer and the gastrodermal cells that host photosynthetic symbionts. Transcriptomic profiles showed large inter-individual variability, indicating that aposymbiosis could be induced by different pathways. We defined a restricted subset of 39 common genes that are characteristic of the symbiotic or aposymbiotic states. We demonstrated that transcription of many genes belonging to this set is specifically enhanced in the symbiotic cells (gastroderm). A model is proposed where the aposymbiotic and therefore heterotrophic state triggers vesicular trafficking, whereas the symbiotic and therefore autotrophic state favors metabolic exchanges between host and symbiont. Several genetic pathways were investigated in more detail: i) a key vitamin K-dependant process involved in the dinoflagellate-cnidarian recognition; ii) two cnidarian tissue-specific carbonic anhydrases involved in the carbon transfer from the environment to the intracellular symbionts; iii) host collagen synthesis, mostly supported by the symbiotic tissue. Further, we identified specific gene duplications and showed that the cnidarian-specific isoform was also up-regulated both in the symbiotic state and in the gastroderm. Our results thus offer new insight into the inter-partner signaling required for the physiological mechanisms of the symbiosis that is crucial for coral health.


Asunto(s)
Dinoflagelados/genética , Anémonas de Mar/genética , Simbiosis/genética , Transcriptoma , Secuencia de Aminoácidos , Animales , Proteínas de Unión al Calcio/clasificación , Proteínas de Unión al Calcio/genética , Moléculas de Adhesión Celular/clasificación , Moléculas de Adhesión Celular/genética , Dinoflagelados/fisiología , Francia , Perfilación de la Expresión Génica , Geografía , Interacciones Huésped-Parásitos/genética , Calor , Mar Mediterráneo , Proteínas de la Membrana/clasificación , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Filogenia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Anémonas de Mar/parasitología , Homología de Secuencia de Aminoácido , Factores de Tiempo
12.
Environ Microbiol Rep ; 16(2): e13236, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38444282

RESUMEN

Corals engage in symbioses with micro-organisms that provide nutrients and protect the host. Where the prokaryotic microbes perform their symbiotic functions within a coral is, however, poorly understood. Here, we studied the tissue-specific microbiota of the coral Corallium rubrum by dissecting its tissues from the skeleton and separating the white polyps from the red-coloured coenenchyme, followed by 16S rRNA gene metabarcoding of the three fractions. Dissection was facilitated by incubating coral fragments in RNAlater, which caused tissues to detach from the skeleton. Our results show compartmentalisation of the microbiota. Specifically, Endozoicomonas, Parcubacteria and a Gammaproteobacteria were primarily located in polyps, whereas Nitrincolaceae and one Spirochaeta phylotype were found mainly in the coenenchyme. The skeleton-associated microbiota was distinct from the microbiota in the tissues. Given the difference in tissue colour and microbiota of the polyps and coenenchyme, we analysed the microbiota of three colormorphs of C. rubrum (red, pink, white), finding that the main difference was a very low abundance of Spirochaeta in white colormorphs. While the functions of C. rubrum's symbionts are unknown, their localisation within the colony suggests that microhabitats exist, and the presence of Spirochaeta appears to be linked to the colour of C. rubrum.


Asunto(s)
Antozoos , Gammaproteobacteria , Animales , ARN Ribosómico 16S/genética , Bacterias/genética , Células Procariotas , Gammaproteobacteria/genética
13.
J Biol Chem ; 287(23): 19367-76, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22505718

RESUMEN

We report here for the first time the isolation and characterization of a protein from the organic matrix (OM) of the sclerites of the alcyonarian, Corallium rubrum. This protein named scleritin is one of the predominant proteins extracted from the EDTA-soluble fraction of the OM. The entire open reading frame (ORF) was obtained by comparing amino acid sequences from de novo mass spectrometry and Edman degradation with an expressed sequence tag library dataset of C. rubrum. Scleritin is a secreted basic phosphorylated protein which exhibits a short amino acid sequence of 135 amino acids and a signal peptide of 20 amino acids. From specific antibodies raised against peptide sequences of scleritin, we obtained immunolabeling of scleroblasts and OM of the sclerites which provides information on the biomineralization pathway in C. rubrum.


Asunto(s)
Antozoos/genética , Bases de Datos de Proteínas , Proteínas de la Matriz Extracelular/genética , Señales de Clasificación de Proteína/genética , Secuencia de Aminoácidos , Animales , Antozoos/metabolismo , Clonación Molecular/métodos , Proteínas de la Matriz Extracelular/metabolismo , Datos de Secuencia Molecular
14.
J Exp Biol ; 216(Pt 8): 1398-404, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23264485

RESUMEN

The regulation of intracellular pH (pHi) is a fundamental aspect of cell physiology that has received little attention in studies of reef-building corals and symbiotic cnidarians. Here, we investigated the hypothesis that dynamic changes in the pHi of coral host cells are controlled by the photosynthetic activity of the coral's dinoflagellate symbionts. Using live cell imaging and the pH-sensitive dye SNARF-1, we tracked pH in symbiont-containing and symbiont-free cells isolated from the reef coral Stylophora pistillata. We characterised the response of coral pHi in the presence of a photosynthetic inhibitor, the dynamics of coral pHi during light exposure and how pHi values vary on exposure to a range of irradiance levels lying within the coral's photosynthesis-irradiance response curve. Our results demonstrate that increases in coral pHi are dependent on photosynthetic activity of intracellular symbionts and that pHi recovers under darkness to values that match those of symbiont-free cells. Furthermore, we show that the timing of the pHi response is governed by irradiance level and that pHi increases to irradiance-specific steady-state values. Minimum steady-state pHi values of 7.05 ± 0.05 were obtained under darkness and maximum values of 7.46 ± 0.07 were obtained under saturating irradiance. As changes in pHi often affect organism homeostasis, there is a need for continued research into acid/base regulation in symbiotic corals. More generally, these results represent the first characterization of photosynthesis-driven pHi changes in animal cells.


Asunto(s)
Antozoos/fisiología , Dinoflagelados/fisiología , Fotosíntesis , Simbiosis , Animales , Concentración de Iones de Hidrógeno , Luz
15.
Bioorg Med Chem ; 21(6): 1437-50, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23199478

RESUMEN

Coral reefs are among the most biologically diverse and economically important ecosystems on the planet. The deposition of massive calcium carbonate skeletons (biomineralization or calcification) by scleractinian corals forms the coral reef framework/architecture that serves as habitat for a large diversity of organisms. This process would not be possible without the intimate symbiosis between corals and photosynthetic dinoflagellates, commonly called zooxanthellae. Carbonic anhydrases play major roles in those two essential processes of coral's physiology: they are involved in the carbon supply for calcium carbonate precipitation as well as in carbon-concentrating mechanisms for symbiont photosynthesis. Here, we review the current understanding of diversity and function of carbonic anhydrases in corals and discuss the perspective of theses enzymes as a key to understanding impacts of environmental changes on coral reefs.


Asunto(s)
Antozoos/enzimología , Anhidrasas Carbónicas/metabolismo , Animales , Carbonato de Calcio/química , Carbonato de Calcio/metabolismo , Inhibidores de Anhidrasa Carbónica/química , Inhibidores de Anhidrasa Carbónica/metabolismo , Anhidrasas Carbónicas/química , Anhidrasas Carbónicas/clasificación , Humanos , Isoenzimas/química , Isoenzimas/metabolismo , Mitocondrias/enzimología , Fotosíntesis , Filogenia , Simbiosis
16.
Sci Total Environ ; 879: 163055, 2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-36972882

RESUMEN

The Mediterranean Sea is a hotspot of global warming where key commercial species, such as demersal and pelagic fishes, and cephalopods, could experience abrupt distribution shifts in the near future. However, the extent to which these range shifts may impact fisheries catch potential remains poorly understood at the scale of Exclusive Economic Zones (EEZs). Here, we evaluated the projected changes in Mediterranean fisheries catches potential, by target fishing gears, under different climate scenarios throughout the 21st century. We show that the future Mediterranean maximum catch potential may decrease considerably by the end of the century under high emission scenarios in South Eastern Mediterranean countries. These projected decreases range between -20 to -75 % for catch by pelagic trawl and seine, -50 to -75 % for fixed nets and traps and exceed -75 % for benthic trawl. In contrast, fixed nets and traps, and benthic trawl fisheries may experience an increase in their catch potential in the North and Celtic seas, while future catches by pelagic trawl and seine may decrease in the same areas. We show that a high emission scenario may considerably amplify the future redistribution of fisheries catch potential across European Seas, thus highlighting the need to limit global warming. Our projections at the manageable scale of EEZ and the quantification of climate-induced impacts on a large part of the Mediterranean and European fisheries is therefore a first, and considerable step toward the development of climate mitigation and adaptations strategies for the fisheries sector.


Asunto(s)
Cambio Climático , Ecosistema , Animales , Explotaciones Pesqueras , Mar Mediterráneo , Calentamiento Global , Peces
17.
Environ Microbiome ; 18(1): 70, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37580830

RESUMEN

Marine heat waves (MHWs) have increased in frequency and intensity worldwide, causing mass mortality of benthic organisms and loss of biodiversity in shallow waters. The Mediterranean Sea is no exception, with shallow populations of habitat-forming octocorals facing the threat of local extinction. The mesophotic zone, which is less affected by MHWs, may be of ecological importance in conservation strategies for these species. However, our understanding of the response of mesophotic octocoral holobionts to changes in seawater temperature remains limited. To address this knowledge gap, we conducted a study on an iconic Mediterranean octocoral, the red coral Corallium rubrum sampled at 60 m depth and 15 °C. We exposed the colonies to temperatures they occasionally experience (18 °C) and temperatures that could occur at the end of the century if global warming continues (21 °C). We also tested their response to extremely cold and warm temperatures (12 °C and 24 °C). Our results show a high tolerance of C. rubrum to a two-month long exposure to temperatures ranging from 12 to 21 °C as no colony showed signs of tissue loss, reduced feeding ability, stress-induced gene expression, or disruption of host-bacterial symbioses. At 24 °C, however, we measured a sharp decrease in the relative abundance of Spirochaetaceae, which are the predominant bacterial symbionts under healthy conditions, along with a relative increase in Vibrionaceae. Tissue loss and overexpression of the tumor necrosis factor receptor 1 gene were also observed after two weeks of exposure. In light of ongoing global warming, our study helps predict the consequences of MHWs on mesophotic coralligenous reefs and the biodiversity that depends on them.

18.
Microbiome ; 11(1): 271, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38053218

RESUMEN

BACKGROUND: Climate change has accelerated the occurrence and severity of heatwaves in the Mediterranean Sea and poses a significant threat to the octocoral species that form the foundation of marine animal forests (MAFs). As coral health intricately relies on the symbiotic relationships established between corals and microbial communities, our goal was to gain a deeper understanding of the role of bacteria in the observed tissue loss of key octocoral species following the unprecedented heatwaves in 2022. RESULTS: Using amplicon sequencing and taxon-specific qPCR analyses, we unexpectedly found that the absolute abundance of the major bacterial symbionts, Spirochaetaceae (C. rubrum) and Endozoicomonas (P. clavata), remained, in most cases, unchanged between colonies with 0% and 90% tissue loss. These results suggest that the impairment of coral health was not due to the loss of the main bacterial symbionts. However, we observed a significant increase in the total abundance of bacterial opportunists, including putative pathogens such as Vibrio, which was not evident when only their relative abundance was considered. In addition, there was no clear relation between bacterial symbiont loss and the intensity of thermal stress, suggesting that factors other than temperature may have influenced the differential response of octocoral microbiomes at different sampling sites. CONCLUSIONS: Our results indicate that tissue loss in octocorals is not directly caused by the decline of the main bacterial symbionts but by the proliferation of opportunistic and pathogenic bacteria. Our findings thus underscore the significance of considering both relative and absolute quantification approaches when evaluating the impact of stressors on coral microbiome as the relative quantification does not accurately depict the actual changes in the microbiome. Consequently, this research enhances our comprehension of the intricate interplay between host organisms, their microbiomes, and environmental stressors, while offering valuable insights into the ecological implications of heatwaves on marine animal forests. Video Abstract.


Asunto(s)
Antozoos , Microbiota , Animales , Bacterias/genética , Antozoos/microbiología , Temperatura , Bosques , Arrecifes de Coral
19.
Sci Rep ; 13(1): 11589, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37463961

RESUMEN

With climate projections questioning the future survival of stony corals and their dominance as tropical reef builders, it is critical to understand the adaptive capacity of corals to ongoing climate change. Biological mediation of the carbonate chemistry of the coral calcifying fluid is a fundamental component for assessing the response of corals to global threats. The Tara Pacific expedition (2016-2018) provided an opportunity to investigate calcification patterns in extant corals throughout the Pacific Ocean. Cores from colonies of the massive Porites and Diploastrea genera were collected from different environments to assess calcification parameters of long-lived reef-building corals. At the basin scale of the Pacific Ocean, we show that both genera systematically up-regulate their calcifying fluid pH and dissolved inorganic carbon to achieve efficient skeletal precipitation. However, while Porites corals increase the aragonite saturation state of the calcifying fluid (Ωcf) at higher temperatures to enhance their calcification capacity, Diploastrea show a steady homeostatic Ωcf across the Pacific temperature gradient. Thus, the extent to which Diploastrea responds to ocean warming and/or acidification is unclear, and it deserves further attention whether this is beneficial or detrimental to future survival of this coral genus.


Asunto(s)
Antozoos , Calcinosis , Animales , Antozoos/fisiología , Arrecifes de Coral , Regulación hacia Arriba , Concentración de Iones de Hidrógeno , Carbonatos/metabolismo , Carbonato de Calcio/metabolismo , Calcificación Fisiológica/fisiología , Agua de Mar
20.
Nat Commun ; 14(1): 3039, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37264002

RESUMEN

Coral reefs are among the most diverse ecosystems on Earth. They support high biodiversity of multicellular organisms that strongly rely on associated microorganisms for health and nutrition. However, the extent of the coral reef microbiome diversity and its distribution at the oceanic basin-scale remains to be explored. Here, we systematically sampled 3 coral morphotypes, 2 fish species, and planktonic communities in 99 reefs from 32 islands across the Pacific Ocean, to assess reef microbiome composition and biogeography. We show a very large richness of reef microorganisms compared to other environments, which extrapolated to all fishes and corals of the Pacific, approximates the current estimated total prokaryotic diversity for the entire Earth. Microbial communities vary among and within the 3 animal biomes (coral, fish, plankton), and geographically. For corals, the cross-ocean patterns of diversity are different from those known for other multicellular organisms. Within each coral morphotype, community composition is always determined by geographic distance first, both at the island and across ocean scale, and then by environment. Our unprecedented sampling effort of coral reef microbiomes, as part of the Tara Pacific expedition, provides new insight into the global microbial diversity, the factors driving their distribution, and the biocomplexity of reef ecosystems.


Asunto(s)
Antozoos , Microbiota , Animales , Arrecifes de Coral , Océano Pacífico , Biodiversidad , Peces , Plancton
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA