Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Exp Biol ; 226(14)2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37387253

RESUMEN

Despite the potential for temporally dependent relationships between trait values and fitness (e.g. as juveniles approach life-stage transitions such as fledging), how developmental stage affects canalization (a measure of robustness to environmental variation) of morphological and physiological traits is rarely considered. To test the sensitivity of morphological and physiological traits to environmental variation in two developmental stages, we manipulated brood size at hatch in European starlings (Sturnus vulgaris) and cross-fostered chicks between enlarged and reduced broods approaching fledging. We measured body size (mass, tarsus, wing length) and physiological state (aerobic capacity, oxidative status) at asymptotic mass on day 15, then cross-fostered chicks between 'high' and 'low' quality environments and assessed the same traits again on day 20, after 5 days of pre-fledging mass recession. Chicks in reduced broods were heavier at asymptotic mass and had lower reactive oxygen metabolites than enlarged broods, whereas structural size, aerobic capacity and antioxidant capacity were unaffected by experimental brood size. The observed canalization of structural and physiological traits during early development was maintained after cross-fostering, during late development. However, in contrast to early development, antioxidant capacity approaching fledging appeared sensitive to environmental conditions, as trajectories varied by cross-fostering treatment. Elevated reactive oxygen metabolites observed after early development in enlarged brood chicks were maintained after cross-fostering, suggesting that canalized development in low-quality environments could produce oxidative costs that carry over between life stages, even when conditions improve. These data reveal trait-specific relationships between environmental conditions and development, and highlight how natal environment effects may vary by developmental stage.


Asunto(s)
Antioxidantes , Estorninos , Animales , Estorninos/fisiología , Tamaño Corporal , Oxidación-Reducción , Estrés Oxidativo
2.
Environ Sci Technol ; 56(12): 8245-8254, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35638116

RESUMEN

Nitrification and biofilm growth within distribution systems remain major issues for drinking water treatment plants utilizing chloramine disinfection. Many chloraminated plants periodically switch to chlorine disinfection for several weeks to mitigate these issues, known as "chlorine burns". The evaluation of disinfection byproduct (DBP) formation during chlorine burns beyond regulated DBPs is scarce. Here, we quantified an extensive suite of 80 regulated and emerging, unregulated DBPs from 10 DBP classes in drinking water from two U.S. drinking water plants during chlorine burn and chloramination treatments. Total organic halogen (TOX), including total organic chlorine, total organic bromine, and total organic iodine, was also quantified, and mammalian cell cytotoxicity of whole water mixtures was assessed in chlorine burn waters for the first time. TOX and most DBPs increased in concentration during chlorine burns, and one emerging DBP, trichloroacetaldehyde, reached 99 µg/L. THMs and HAAs reached concentrations of 249 and 271 µg/L, respectively. Two highly cytotoxic nitrogenous DBP classes, haloacetamides and haloacetonitriles, increased during chlorine burns, reaching up to 14.2 and 19.3 µg/L, respectively. Cytotoxicity did not always increase from chloramine treatment to chlorine burn, but a 100% increase in cytotoxicity was observed for one plant. These data highlight that consumer DBP exposure during chlorine burns can be substantial.


Asunto(s)
Desinfectantes , Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Animales , Cloraminas , Cloro , Desinfección , Halogenación , Halógenos , Mamíferos , Trihalometanos , Contaminantes Químicos del Agua/toxicidad
3.
Environ Sci Technol ; 56(1): 392-402, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34910457

RESUMEN

This study reveals key disinfection byproduct (DBP) toxicity drivers in drinking water across the United States. DBPs, which are ubiquitous in drinking water, form by the reaction of disinfectants, organic matter, bromide, and iodide and are generally present at 100-1000× higher concentrations than other contaminants. DBPs are linked to bladder cancer, miscarriage, and birth defects in human epidemiologic studies, but it is not known as to which DBPs are responsible. We report the most comprehensive investigation of drinking water toxicity to date, with measurements of extracted whole-water mammalian cell chronic cytotoxicity, over 70 regulated and priority unregulated DBPs, and total organic chlorine, bromine, and iodine, revealing a more complete picture of toxicity drivers. A variety of impacted waters were investigated, including those impacted by wastewater, agriculture, and seawater. The results revealed that unregulated haloacetonitriles, particularly dihaloacetonitriles, are important toxicity drivers. In seawater-impacted water treated with chloramine, toxicity was driven by iodinated DBPs, particularly iodoacetic acids. In chlorinated waters, the combined total organic chlorine and bromine was highly and significantly correlated with toxicity (r = 0.94, P < 0.01); in chloraminated waters, total organic iodine was highly and significantly correlated with toxicity (r = 0.80, P < 0.001). These results indicate that haloacetonitriles and iodoacetic acids should be prioritized in future research for potential regulation consideration.


Asunto(s)
Desinfectantes , Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Animales , Cloro , Desinfectantes/toxicidad , Desinfección , Halogenación , Humanos , Mamíferos , Estados Unidos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Purificación del Agua/métodos
4.
J Environ Sci (China) ; 117: 264-275, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35725078

RESUMEN

Halogenated disinfection byproducts (DBPs) are an unintended consequence of drinking water disinfection, and can have significant toxicity. XAD resins are commonly used to extract and enrich trace levels of DBPs for comprehensive, nontarget identification of DBPs and also for in vitro toxicity studies. However, XAD resin recoveries for complete classes of halogenated DBPs have not been evaluated, particularly for low, environmentally relevant levels (ng/L to low µg/L). Thus, it is not known whether levels of DBPs or the toxicity of drinking water might be underestimated. In this study, DAX-8/XAD-2 layered resins were evaluated, considering both adsorption and elution from the resins, for extracting 66 DBPs from water. Results demonstrate that among the 7 classes of DBPs investigated, trihalomethanes (THMs), including iodo-THMs, were the most efficiently adsorbed, with recovery of most THMs ranging from 50%-96%, followed by halonitromethanes (40%-90%). The adsorption ability of XAD resins for haloacetonitriles, haloacetamides, and haloacetaldehydes was highly dependent on the individual species. The adsorption capacity of XAD resins for haloacetic acids was lower (5%-48%), even after adjusting to pH 1 before extraction. Recovery efficiency for most DBPs was comparable with their adsorption, as most were eluted effectively from XAD resins by ethyl acetate. DBP polarity and molecular weight were the two most important factors that determine their recovery. Recovery of trichloromethane, iodoacetic acid, chloro- and iodo-acetonitrile, and chloroacetamide were among the lowest, which could lead to underestimation of toxicity, particularly for iodoacetic acid and iodo-acetonitrile, which are highly toxic.


Asunto(s)
Desinfectantes , Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Acetonitrilos , Desinfectantes/análisis , Desinfectantes/toxicidad , Desinfección , Halogenación , Yodoacetatos , Trihalometanos/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Purificación del Agua/métodos
5.
J Environ Sci (China) ; 117: 161-172, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35725068

RESUMEN

A survey was conducted at eight U.S. drinking water plants, that spanned a wide range of water qualities and treatment/disinfection practices. Plants that treated heavily-wastewater-impacted source waters had lower trihalomethane to dihaloacetonitrile ratios due to the presence of more organic nitrogen and HAN precursors. As the bromide to total organic carbon ratio increased, there was more bromine incorporation into DBPs. This has been shown in other studies for THMs and selected emerging DBPs (HANs), whereas this study examined bromine incorporation for a wider group of emerging DBPs (haloacetaldehydes, halonitromethanes). Moreover, bromine incorporation into the emerging DBPs was, in general, similar to that of the THMs. Epidemiology studies that show an association between adverse health effects and brominated THMs may be due to the formation of brominated emerging DBPs of heath concern. Plants with higher free chlorine contact times before ammonia addition to form chloramines had less iodinated DBP formation in chloraminated distribution systems, where there was more oxidation of the iodide to iodate (a sink for the iodide) by the chlorine. This has been shown in many bench-scale studies (primarily for iodinated THMs), but seldom in full-scale studies (where this study also showed the impact on total organic iodine. Collectively, the THMs, haloacetic acids, and emerging DBPs accounted for a significant portion of the TOCl, TOBr, and TOI; however, ∼50% of the TOCl and TOBr is still unknown. The correlation of the sum of detected DBPs with the TOCl and TOBr suggests that they can be used as reliable surrogates.


Asunto(s)
Desinfectantes , Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Bromo , Cloro , Desinfectantes/análisis , Desinfección , Halogenación , Yoduros , Trihalometanos/análisis , Contaminantes Químicos del Agua/análisis
6.
Environ Sci Technol ; 55(5): 2908-2918, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33594894

RESUMEN

Swimming pools are commonly treated with chlorine, which reacts with the natural organic matter and organic matter introduced by swimmers and form disinfection byproducts (DBPs) that are associated with respiratory-related issues, including asthma, in avid swimmers. We investigated a complementary disinfectant to chlorine, copper-silver ionization (CSI), with the aim of lowering the amount of chlorine used in pools and limiting health risks from DBPs. We sampled an indoor and outdoor pool treated with CSI-chlorine during the swimming season in 2017-2018 and measured 71 DBPs, speciated total organic halogen, in vitro mammalian cell cytotoxicity, and N-acetyl-l-cysteine (NAC) thiol reactivity as a cytotoxicity predictor. Controlled, simulated swimming pools were also investigated. Emerging DBP concentrations decreased by as much as 80% and cytotoxicity decreased as much as 70% in the indoor pool when a lower chlorine residual (1.0 mg/L) and CSI was used. Some DBPs were quantified for the first time in pools, including chloroacetaldehyde (up to 10.6 µg/L), the most cytotoxic haloacetaldehyde studied to date and a major driver of the measured cytotoxicity in this study. Three highly toxic iodinated haloacetic acids (iodoacetic acid, bromoiodoacetic acid, and chloroiodoacetic acid) were also quantified in pools for the first time. We also found that the NAC thiol reactivity was significantly correlated to cytotoxicity, which could be useful for predicting the cytotoxicity of swimming pool waters in future studies.


Asunto(s)
Desinfectantes , Piscinas , Contaminantes Químicos del Agua , Animales , Cloro , Cobre/toxicidad , Desinfectantes/toxicidad , Desinfección , Plata , Trihalometanos/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
7.
Anal Chem ; 92(4): 3058-3068, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-31950829

RESUMEN

Disinfection byproducts (DBPs) are a ubiquitous source of chemical exposure in drinking water and have been associated with serious health impacts in human epidemiologic studies. While toxicology studies have pinpointed DBPs with the greatest toxic potency, analytical methods have been lacking for quantifying complete classes of most toxic DBPs at sufficiently low quantification limits (ng/L). This new method reports the parts-per-trillion quantification for 61 toxicologically significant DBPs from 7 different chemical classes, including unregulated iodinated haloacetic acids (HAAs) and trihalomethanes (THMs), haloacetaldehydes, haloketones, haloacetonitriles, halonitromethanes, and haloacetamides, in addition to regulated HAAs and THMs. The final optimized method uses salt-assisted liquid-liquid extraction in a single extraction method for a wide range of DBPs, producing the lowest method detection limits to-date for many compounds, including highly toxic iodinated, brominated, and nitrogen-containing DBPs. Extracts were divided for the analysis of the HAAs (including iodinated HAAs) by diazomethane derivatization and analysis using a GC-triple quadrupole mass spectrometer with multiple reaction monitoring, resulting in higher signal-to-noise ratios, greater selectivity, and improved detection of these compounds. The remaining DBPs were analyzed using a GC-single quadrupole mass spectrometer with selected ion monitoring, utilizing a multimode inlet allowed for lower injection temperatures to allow the analysis of thermally labile DBPs. Finally, the use of a specialty-phase GC column (Restek Rtx-200) significantly improved peak shapes, which improved separations and lowered detection limits. Method detection limits for most DBPs were between 15 and 100 ng/L, and relative standard deviations in tap water samples were mostly between 0.2 and 30%. DBP concentrations in real samples ranged from 40 to 17 760 ng/L for this study.


Asunto(s)
Bromuros/análisis , Cloruros/análisis , Agua Potable/análisis , Yoduros/análisis , Polisacáridos/análisis , Contaminantes Químicos del Agua/análisis , Extracción Líquido-Líquido , Extracción en Fase Sólida
8.
Environ Sci Technol ; 54(15): 9374-9386, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32600038

RESUMEN

Introduction of oil and gas extraction wastewaters (OGWs) to surface water leads to elevated halide levels from geogenic bromide and iodide, as well as enhanced formation of brominated and iodinated disinfection byproducts (DBPs) when treated. OGWs contain high levels of chemical additives used to optimize extraction activities, such as surfactants, which have the potential to serve as organic DBP precursors in OGW-impacted water sources. We report the first identification of olefin sulfonate surfactant-derived DBPs from laboratory-disinfected gas extraction wastewater. Over 300 sulfur-containing DBPs, with 43 unique molecular formulas, were found by high-resolution mass spectrometry, following bench-scale chlor(am)ination. DBPs consisted of mostly brominated species, including bromohydrin sulfonates, dihalo-bromosulfonates, and bromosultone sulfonates, with chlorinated/iodinated analogues formed to a lesser extent. Disinfection of a commercial C12-olefin sulfonate surfactant mixture revealed dodecene sulfonate as a likely precursor for most detected DBPs; disulfur-containing DBPs, like bromosultone sulfonate and bromohydrin disulfonate, originated from olefin disulfonate species, present as side-products of olefin sulfonate production. Disinfection of wastewaters increased mammalian cytotoxicity several orders of magnitude, with chloraminated water being more toxic. This finding is important to OGW-impacted source waters because drinking water plants with high-bromide source waters may switch to chloramination to meet DBP regulations.


Asunto(s)
Desinfectantes , Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Animales , Desinfectantes/análisis , Desinfección , Halogenación , Espectrometría de Masas , Azufre , Tensoactivos , Aguas Residuales , Contaminantes Químicos del Agua/análisis
9.
J Environ Sci (China) ; 58: 271-284, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28774618

RESUMEN

Lead contamination in the City of Flint, MI has been well documented over the past two years, with lead levels above the EPA Action Level until summer 2016. This resulted from an ill-fated decision to switch from Detroit water (Lake Huron) with corrosion control, to Flint River water without corrosion control. Although lead levels are now closer to normal, reports of skin rashes have sparked questions surrounding tap water in some Flint homes. This study investigated the presence of contaminants, including disinfection by-products (DBPs), in the hot tap water used for showering in the homes of residents in Flint. Extensive quantitative analysis of 61 regulated and priority unregulated DBPs was conducted in Flint hot and cold tap water, along with the analysis of 50 volatile organic compounds and a nontarget comprehensive, broadscreen analysis, to identify a possible source for the reported skin rashes. For comparison, chlorinated hot and cold waters from three other cities were also sampled, including Detroit, which also uses Lake Huron as its source water. Results showed that hot water samples generally contained elevated levels of regulated and priority unregulated DBPs compared to cold water samples, but trihalomethanes were still within regulatory limits. Overall, hot shower water from Flint was similar to waters sampled from the three other cities and did not have unusually high levels of DBPs or other organic chemicals that could be responsible for the skin rashes observed by residents. It is possible that an inorganic chemical or microbial contaminant may be responsible.


Asunto(s)
Desinfectantes/análisis , Exposición a Riesgos Ambientales/estadística & datos numéricos , Higiene , Contaminantes Químicos del Agua/análisis , Desinfección/métodos , Agua Potable/química , Humanos , Michigan , Medición de Riesgo , Trihalometanos/análisis , Purificación del Agua/métodos , Abastecimiento de Agua
10.
R Soc Open Sci ; 9(6): 220583, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35706664

RESUMEN

Recent studies have reported beneficial carryover effects of juvenile development that predict interspecific survival differences at independence. Yet, traits relating to body size (i.e. morphological traits) have proven to be unreliable predictors of juvenile survival within species. Exploring individual variation of growth trajectories and how they covary with physiology could reveal species-specific developmental modes which have implications for our assessments of juvenile quality. Here, we investigated morphological development of European starlings (Sturnus vulgaris) approaching fledging in relation to three components of physiological condition at independence: aerobic capacity, energy state and oxidative status. We found evidence of flexible mass and wing growth which independently covaried with fledgling energy state and aerobic capacity, respectively. By comparison, tarsus and wing length at fledging were unrelated to any physiological trait, while mass was positively associated with principal component scores that comprised aerobic capacity and energy state. Thus, flexible growth trajectories were consistent with 'developmental plasticity': adaptive pre-fledging mass recession and compensatory wing growth, which seemingly came at a physiological cost, while fledgling body mass positively reflected overall physiological condition. This highlights how patterns of growth and absolute size may differently reflect fledgling physiology, potentially leading to variable relationships between morphological traits and juvenile fitness.

11.
Sci Total Environ ; 768: 144750, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33736315

RESUMEN

Recent urban public water supply contamination events emphasize the importance of screening treated drinking water quality after distribution. In vitro bioassays, when run concurrently with analytical chemistry methods, are effective tools to evaluating the efficacy of water treatment processes and water quality. We tested 49 water samples representing the Chicago Department of Water Management service areas for estrogen, (anti)androgen, glucocorticoid receptor-activating contaminants and cytotoxicity. We present a tiered screening approach suitable to samples with anticipated low-level activity and initially tested all extracts for statistically identifiable endocrine activity; performing a secondary dilution-response analysis to determine sample EC50 and biological equivalency values (BioEq). Estrogenic activity was detected in untreated Lake Michigan intake water samples using mammalian (5/49; median: 0.21 ng E2Eq/L) and yeast cell (5/49; 1.78 ng E2Eq/L) bioassays. A highly sensitive (anti)androgenic activity bioassay was applied for the first time to water quality screening and androgenic activity was detected in untreated intake and treated pre-distribution samples (4/49; 0.93 ng DHTEq/L). No activity was identified above method detection limits in the yeast androgenic, mammalian anti-androgenic, and both glucocorticoid bioassays. Known estrogen receptor agonists were detected using HPLC/MS-MS (estrone: 0.72-1.4 ng/L; 17α-estradiol: 1.3-1.5 ng/L; 17ß-estradiol: 1.4 ng/L; equol: 8.8 ng/L), however occurrence did not correlate with estrogenic bioassay results. Many studies have applied bioassays to water quality monitoring using only relatively small samples sets often collected from surface and/or wastewater effluent. However, to realistically adapt these tools to treated water quality monitoring, water quality managers must have the capacity to screen potentially hundreds of samples in short timeframes. Therefore, we provided a tiered screening model that increased sample screening speed, without sacrificing statistical stringency, and detected estrogenic and androgenic activity only in pre-distribution Chicago area samples.


Asunto(s)
Disruptores Endocrinos , Contaminantes Químicos del Agua , Animales , Bioensayo , Chicago , Disruptores Endocrinos/análisis , Monitoreo del Ambiente , Estrógenos/análisis , Michigan , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Calidad del Agua
12.
Sci Rep ; 11(1): 21680, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34737383

RESUMEN

The changing landscape of genomics research and clinical practice has created a need for computational pipelines capable of efficiently orchestrating complex analysis stages while handling large volumes of data across heterogeneous computational environments. Workflow Management Systems (WfMSs) are the software components employed to fill this gap. This work provides an approach and systematic evaluation of key features of popular bioinformatics WfMSs in use today: Nextflow, CWL, and WDL and some of their executors, along with Swift/T, a workflow manager commonly used in high-scale physics applications. We employed two use cases: a variant-calling genomic pipeline and a scalability-testing framework, where both were run locally, on an HPC cluster, and in the cloud. This allowed for evaluation of those four WfMSs in terms of language expressiveness, modularity, scalability, robustness, reproducibility, interoperability, ease of development, along with adoption and usage in research labs and healthcare settings. This article is trying to answer, which WfMS should be chosen for a given bioinformatics application regardless of analysis type?. The choice of a given WfMS is a function of both its intrinsic language and engine features. Within bioinformatics, where analysts are a mix of dry and wet lab scientists, the choice is also governed by collaborations and adoption within large consortia and technical support provided by the WfMS team/community. As the community and its needs continue to evolve along with computational infrastructure, WfMSs will also evolve, especially those with permissive licenses that allow commercial use. In much the same way as the dataflow paradigm and containerization are now well understood to be very useful in bioinformatics applications, we will continue to see innovations of tools and utilities for other purposes, like big data technologies, interoperability, and provenance.


Asunto(s)
Biología Computacional/métodos , Programas Informáticos , Flujo de Trabajo , Macrodatos , Genómica , Humanos , Reproducibilidad de los Resultados
13.
Sci Total Environ ; 719: 137236, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32126404

RESUMEN

Safe drinking water at the point of use (tapwater, TW) is a public-health priority. TW exposures and potential human-health concerns of 540 organics and 35 inorganics were assessed in 45 Chicago-area United States (US) homes in 2017. No US Environmental Protection Agency (EPA) enforceable Maximum Contaminant Level(s) (MCL) were exceeded in any residential or water treatment plant (WTP) pre-distribution TW sample. Ninety percent (90%) of organic analytes were not detected in treated TW, emphasizing the high quality of the Lake Michigan drinking-water source and the efficacy of the drinking-water treatment and monitoring. Sixteen (16) organics were detected in >25% of TW samples, with about 50 detected at least once. Low-level TW exposures to unregulated disinfection byproducts (DBP) of emerging concern, per/polyfluoroalkyl substances (PFAS), and three pesticides were ubiquitous. Common exceedances of non-enforceable EPA MCL Goal(s) (MCLG) of zero for arsenic [As], lead [Pb], uranium [U], bromodichloromethane, and tribromomethane suggest potential human-health concerns and emphasize the continuing need for improved understanding of cumulative effects of low-concentration mixtures on vulnerable sub-populations. Because DBP dominated TW organics, residential-TW concentrations are potentially predictable with expanded pre-distribution DBP monitoring. However, several TW chemicals, notably Pb and several infrequently detected organic compounds, were not readily explained by pre-distribution samples, illustrating the need for continued broad inorganic/organic TW characterization to support consumer assessment of acceptable risk and point-of-use treatment options.


Asunto(s)
Purificación del Agua , Chicago , Agua Potable , Michigan , Plaguicidas , Estados Unidos , Contaminantes Químicos del Agua
14.
J Colloid Interface Sci ; 505: 1172-1176, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28715861

RESUMEN

Gold nanoparticles having a rod-like morphology are regularly investigated as potential nano-therapeutic materials owing to their interesting optical properties, facile surface modification, tunable aspect ratios, and low cytotoxicity. Gold nanorods are historically prepared starting from HAuCl4 in the presence of ascorbic acid, silver nitrate, and the growth directing surfactant, cetyltrimethylammonium bromide (CTAB). While CTAB drives a rod-like morphology, it is known to be cytotoxic. This inherent toxicity is often addressed by removing or masking the native CTAB surfactant present on the nanorod surface. In the current study we have investigated a less toxic alternative surfactant, dodecylethyldimethylammonium bromide (C12EDMAB), as a possible growth-directing agent. Monodisperse gold nanorods having various lengths have been grown in the presence of C12EDMAB. SEM data suggests that the quantity of C12EDMAB on the rod's surface is much higher than that of CTAB. Toxicity assays were performed on HEp-2 and A549 cells showing lower toxicity at select concentrations for C12EDMAB coated rods.


Asunto(s)
Oro/química , Nanopartículas del Metal/administración & dosificación , Nanotubos/química , Compuestos de Amonio Cuaternario/química , Tensoactivos/química , Células A549 , Supervivencia Celular , Cetrimonio , Compuestos de Cetrimonio/química , Células Hep G2 , Humanos , Nanopartículas del Metal/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA