Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 92(16): 11288-11296, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32689790

RESUMEN

In this study, we report the development of an electrically active solid-liquid interface for the evanescent-wave cavity-ring-down spectroscopic (EW-CRDS) technique to enable spectroelectrochemical investigations of redox events. Because of a high-quality transparent conductive electrode film of indium tin oxide (ITO) coated on the interface of total internal reflection of the EW-CRDS platform, a cavity ring-down time of about 900 ns was obtained allowing spectroelectrochemical studies at solid-liquid interfaces. As a proof-of-concept on the capabilities of the developed platform, measurements were performed to address the effects of an applied electric potential to the adsorption behavior of the redox protein cytochrome c (Cyt-C) onto different interfaces, namely, bare-ITO, 3-aminopropyl triethoxysilane (APTES), and Cyt-C antibody. For each interface, the adsorption and desorption constants, the surface equilibrium constant, the Gibbs free energy of adsorption, and the surface coverage were optically measured by our electrically active EW-CRDS tool. Optical measurements at a set of constant discrete values of the applied electric potential were acquired for kinetic adsorption analysis. Cyclic voltammetry (CV) scans under synchronous optical readout were performed to study the effects of each molecular interface on the redox process of surface-adsorbed protein species. Overall, the experimental results demonstrate the ability of the electro-active EW-CRDS platform to unambiguously measure electrode-driven redox events of surface-confined molecular species at low submonolayer coverages and at a single diffraction-limited spot. Such capability is expected to open several opportunities for the EW-CRDS technique to investigate a variety of electrochemical phenomena at solid-liquid interfaces.

2.
Anal Sci ; 40(6): 1089-1099, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38512454

RESUMEN

Several studies have explored the adsorption of various proteins onto solid-liquid interfaces, revealing the crucial role of buffer solutions in biological processes. However, a comprehensive evaluation of the buffer's influence on protein absorption onto fused silica is still lacking. This study employs evanescent-wave cavity ring-down spectroscopy (EW-CRDS) to assess the influence of buffer solutions and pH on the adsorption kinetics of three globular proteins: hemoglobin (Hb), myoglobin (Mb), and cytochrome c (Cyt-C) onto fused silica. The EW-CRDS tool, with a ring-down time of 1.4 µ s and a minimum detectable absorbance of 1 × 10 - 6 , enabled precise optical measurements at solid-liquid interfaces. The three heme proteins' adsorption behavior was investigated at pH 7 in three different solvents: deionized (DI) water, tris(hydroxymethyl)-aminomethane hydrochloride (Tris-HCl), and phosphate buffered saline (PBS). For each protein, the surface coverage, the adsorption and desorption constants, and the surface equilibrium constant were optically measured by our EW-CRDS tool. Depending on the nature of each solvent, the proteins showed a completely different adsorption trend on the silica surface. The adsorption of Mb on the silica surface was depressed in the presence of both Tris-HCl and PBS buffers compared with unbuffered (DI water) solutions. In contrast, Cyt-C adsorption appears to be relatively unaffected by the choice of buffer, as it involves strong electrostatic interactions with the surface. Notably, Hb exhibits an opposite trend, with enhanced protein adsorption in the presence of Tris-HCl and PBS buffer. The pH investigations demonstrated that the electrostatic interactions between the proteins and the surface had a major influence on protein adsorption on the silica surface, with adsorption being greatest when the pH values were around the protein's isoelectric point. This study demonstrated the ability of the highly sensitive EW-CRDS tool to study the adsorption events of the evanescent-field-confined protein species in real-time at low surface coverages with fast resolution, making it a valuable tool for studying biomolecule kinetics at solid-liquid interfaces.


Asunto(s)
Citocromos c , Dióxido de Silicio , Solventes , Propiedades de Superficie , Dióxido de Silicio/química , Adsorción , Concentración de Iones de Hidrógeno , Solventes/química , Citocromos c/química , Análisis Espectral/métodos , Hemoglobinas/química , Mioglobina/química , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA