Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Chirality ; 36(3): e23659, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38445305

RESUMEN

Due to a great demand for amylose and cellulose polymeric chromatographic chiral columns, the enantiomeric separation of thiourea derivatives of naringenin was achieved on the different amylose (Chiralpak-IB) and cellulose chiral (Chiralcel-OJ and Chiralcel-OD-3R) columns with varied chromatographic conditions. The isocratic mobile phases used were ethanol and methanol, where ethanol/hexane and methanol/hexane were used as gradient mode and were prepared in volume/volume relation. The separation and resolution factors for all the enantiomers were in the range of 1.25 to 3.47 and 0.48 to 1.75, respectively. The enantiomeric resolution was obtained within 12 min making fast separation. The docking studies confirmed the chiral recognition mechanisms with binding affinities in the range of -4.7 to -5.7 kcal/mol. The reported compounds have good anticoagulant activities and may be used as anticoagulants in the future. Besides, chiral separation is fast and is useful for enantiomeric separation in any laboratory in the world.


Asunto(s)
Amilosa , Flavanonas , Hexanos , Metanol , Estereoisomerismo , Celulosa , Polímeros , Etanol , Tiourea
2.
Int J Phytoremediation ; 26(3): 324-338, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37545130

RESUMEN

In this investigation, microwave irradiation assisted by ZnCl2 was used to transform pineapple crown (PN) waste into mesoporous activated carbon (PNAC). Complementary techniques were employed to examine the physicochemical characteristics of PNAC, including BET, FTIR, SEM-EDX, XRD, and pH at the point-of-zero-charge (pHpzc). PNAC is mesoporous adsorbent with a surface area of 1070 m2/g. The statistical optimization for the adsorption process of two model cationic dyes (methylene blue: MB and, crystal violet: CV) was conducted using the response surface methodology-Box-Behnken design (RSM-BBD). The parameters include solution pH (4-10), contact time (2-12) min, and PNAC dosage (0.02-0.1 g/100 mL). The Freundlich and Langmuir models adequately described the dye adsorption isotherm results for the MB and CV systems, whereas the pseudo-second order kinetic model accounted for the time dependent adsorption results. The maximum adsorption capacity (qmax) for PNAC with the two tested dyes are listed: 263.9 mg/g for CV and 274.8 mg/g for MB. The unique adsorption mechanism of MB and CV dyes by PNAC implicates multiple contributions to the adsorption process such as pore filling, electrostatic forces, H-bonding, and π-π interactions. This study illustrates the possibility of transforming PN into activated carbon (PNAC) with the potential to remove two cationic dyes from aqueous media.


The novelty of this research work stems from the conversion of pineapple (Ananas comosus) crown wastes with no monetary value into an efficient activated carbon adsorbent with relatively high surface area. Furthermore, a fast and convenient microwave assisted ZnCl2 activation method was applied for producing the activated carbon (AC). The effectiveness of the produced AC was tested for the removal of two different cationic dyes: crystal violet (CV) and methylene blue (MB). A statistical optimization that employs a response surface methodology with the Box-Behnken design was employed to optimize the adsorption variables for the optimal dye removal. Moreover, the dye adsorption kinetics and thermodynamics, equilibrium isotherms, and the details of the adsorption process were reported herein.


Asunto(s)
Ananas , Contaminantes Químicos del Agua , Colorantes/química , Azul de Metileno/análisis , Azul de Metileno/química , Carbón Orgánico/química , Violeta de Genciana , Adsorción , Microondas , Biodegradación Ambiental , Cinética , Contaminantes Químicos del Agua/análisis , Concentración de Iones de Hidrógeno
3.
Int J Phytoremediation ; : 1-12, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711172

RESUMEN

Herein, this work targets to employ the blended fruit wastes including rambutan (Nephelium lappaceum) peel and durian (Durio zibethinus) seed as a promising precursor to produce activated carbon (RPDSAC). The generation of RPDSAC was accomplished through a rapid and practical procedure (microwave-ZnCl2 activation). To evaluate the adsorptive capabilities of RPDSAC, its efficacy in eliminating methylene blue (MB), a simulated cationic dye, was measured. The Box-Behnken design (BBD) was utilized to optimize the crucial adsorption parameters, namely A: RPDSAC dose (0.02-01 g/100 mL), B: pH (4-10), and C: time (2-6 min). The BBD design determined that the highest level of MB removal (79.4%) was achieved with the condition dosage of RPDSAC at 0.1 g/100 mL, contact time (6 min), and pH (10). The adsorption isotherm data is consistent with the Freundlich concept, and the pseudo-second-order versions adequately describe the kinetic data. The monolayer adsorption capacity (qmax) of RPDSAC reached 120.4 mg/g at 25 °C. Various adsorption mechanisms are involved in the adsorption of MB dye onto the surface of RPDSAC, including π-π stacking, H-bonding, pore filling, and electrostatic forces. This study exhibits the potential of the RPDSAC as an adsorbent for removal of toxic cationic dye (MB) from contaminated wastewater.

4.
Int J Phytoremediation ; 26(5): 727-739, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37817463

RESUMEN

In this study, the focus was on utilizing tropical plant biomass waste, specifically bamboo (BB), as a sustainable precursor for the production of activated carbon (BBAC) via pyrolysis-induced K2CO3 activation. The potential application of BBAC as an effective adsorbent for the removal of methylene blue (MB) dye from aqueous solutions was investigated. Response surface methodology (RSM) was employed to evaluate key adsorption characteristics, which included BBAC dosage (A: 0.02-0.08 g/L), pH (B: 4-10), and time (C: 2-8 min). The adsorption isotherm analysis revealed that the adsorption of MB followed the Freundlich model. Moreover, the kinetic data were well-described by the pseudo-second-order model, suggesting the role of a chemisorption process. The BBAC demonstrated a notable MB adsorption capacity of 195.8 mg/g, highlighting its effectiveness as an adsorbent. Multiple mechanisms were identified as controlling factors in MB adsorption by BBAC, including electrostatic forces, π-π stacking, and H-bonding interactions. The findings of this study indicate that BBAC derived from bamboo has the potential to be a promising adsorbent for the treatment of wastewater containing organic dyes. The employment of sustainable precursors like bamboo for activated carbon production contributes to environmentally friendly waste management practices and offers a solution for the remediation of dye-contaminated wastewater.


This works introduces a renewable and woody Bambusoideae waste as promising and low-cost precursor for producing mesoporous activated carbon via microwave assisted K2CO3 activation. The effectiveness of the prepared activated carbon was tested toward removal of a toxic cationic dye, namely; methylene blue from aqueous environment.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Carbón Orgánico , Azul de Metileno , Concentración de Iones de Hidrógeno , Biodegradación Ambiental , Poaceae , Adsorción , Cinética
5.
Int J Phytoremediation ; 26(4): 579-593, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37740456

RESUMEN

In this study, bamboo waste (BW) was subjected to pyrolysis-assisted ZnCl2 activation to produce mesoporous activated carbon (BW-AC), which was then evaluated for its ability to remove cationic dyes, specifically methylene blue (MB) and crystal violet (CV), from aqueous environments. The properties of BW-AC were characterized using various techniques, including potentiometric-based point of zero charge (pHpzc), scanning electron microscopy with energy dispersive X-rays (SEM-EDX), X-ray diffraction (XRD), gas adsorption with Brunauer-Emmett-Teller (BET) analysis, infrared (IR) spectroscopy. To optimize the adsorption characteristics (BW-AC dosage, pH, and contact time) of PBW, a Box-Behnken design (BBD) was employed. The BW-AC dose of 0.05 g, solution pH of 10, and time of 8 min are identified as optimal operational conditions for achieving maximum CV (89.8%) and MB (96.3%) adsorption according to the BBD model. The dye removal kinetics for CV and MB are described by the pseudo-second-order model. The dye adsorption isotherms revealed that adsorption of CV and MB onto BW-AC follow the Freundlich model. The maximum dye adsorption capacities (qmax) of BW-AC for CV (530 mg/g) and MB (520 mg/g) are favorable, along with the thermodynamics of the adsorption process, which is characterized as endothermic and spontaneous. The adsorption mechanism of CV and MB dyes by BW-AC was attributed to multiple contributions: hydrogen bonding, electrostatic forces, π-π attraction, and pore filling. The findings of this study highlight the potential of BW-AC as an effective adsorbent in wastewater treatment applications, contributing to the overall goal of mitigating the environmental impact of cationic dyes and ensuring the quality of water resources.


The novelty of this research work comes from the conversion of the bamboo waste (BW) into mesoporous activated carbon (BW-AC) via pyrolysis-assisted ZnCl2 activation for the removal of cationic dyes such as methylene blue (MB) and crystal violet (CV) from aqueous media. The effectiveness of the obtained activated carbon was tested toward removal of two structurally different cationic dyes (CV and MB), where a statistical optimization employing a response surface methodology with Box-Behnken design was applied to optimize dye removal. In addition to determination of the working parameters for dye removal, the adsorption kinetics and thermodynamic parameters for the adsorption process were determined to provide molecular-level insight.


Asunto(s)
Colorantes , Contaminantes Químicos del Agua , Colorantes/química , Azul de Metileno/análisis , Carbón Orgánico/química , Violeta de Genciana/química , Contaminantes Químicos del Agua/química , Biodegradación Ambiental , Adsorción , Termodinámica , Cinética , Concentración de Iones de Hidrógeno
6.
Int J Phytoremediation ; 26(5): 699-709, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37740478

RESUMEN

A major worldwide challenge that presents significant economic, environmental, and social concerns is the rising generation of food waste. The current work used chicken bones (CB) and rice (R) food waste as alternate precursors for the production of activated carbon (CBRAC) by microwave radiation-assisted ZnCl2 activation. The adsorption characteristics of CBRAC were investigated in depth by removing an organic dye (crystal violet, CV) from an aquatic environment. To establish ideal conditions from the significant adsorption factors (A: CBRAC dosage (0.02-0.12 g/100 mL); B: pH (4-10); and C: duration (30-420), a numerical desirability function of Box-Behnken design (BBD) was utilized. The highest CV decolorization by CBRAC was reported to be 90.06% when the following conditions were met: dose = 0.118 g/100 mL, pH = 9.0, and time = 408 min. Adsorption kinetics revealed that the pseudo-first order (PFO) model best matches the data, whereas the Langmuir model was characterized by equilibrium adsorption, where the adsorption capacity of CBRAC for CV dye was calculated to be 57.9 mg/g. CV adsorption is accomplished by several processes, including electrostatic forces, pore diffusion, π-π stacking, and H-bonding. This study demonstrates the use of CB and R as biomass precursors for the efficient creation of CBRAC and their use in wastewater treatment, resulting in a greener environment.


The novelty of this research work relates to converting food wastes (mixture of chicken bones and rice waste) into activated carbon via microwave assisted ZnCl2 activation. Moreover, the produced activated carbon was successfully applied as a potential adsorbent for removal of a toxic cationic dye; namely, crystal violet (CV) from aqueous environment.


Asunto(s)
Oryza , Eliminación de Residuos , Contaminantes Químicos del Agua , Animales , Alimento Perdido y Desperdiciado , Violeta de Genciana/química , Carbón Orgánico/química , Microondas , Pollos , Alimentos , Biodegradación Ambiental , Adsorción , Cinética , Contaminantes Químicos del Agua/química , Concentración de Iones de Hidrógeno
7.
Int J Phytoremediation ; 26(8): 1348-1358, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38456236

RESUMEN

In this study, a hydrothermal approach was employed to graft chitosan (Chit)/algae (ALG) with salicylaldehyde (SA), resulting in the synthesis of a biocomposite named salicylaldehyde-based chitosan Schiff base/algae (Chit-SA/ALG). The main objective of this biocomposite was to effectively remove methyl violet (MV), an organic dye, from aqueous solutions. The adsorption performance of Chit-SA/ALG toward MV was investigated in detail, considering the effects of three factors: (A) Chit-SA/ALG dose (ranging from 0.02 to 0.1 g/100 mL), (B) pH (ranging from 4 to 10), and (C) time (ranging from 10 to 120 min). The Box-Behnken design (BBD) was utilized for experimental design and analysis. The experimental results exhibited a good fit with both the pseudo-second-order kinetic model and the Freundlich isotherm, suggesting their suitability for describing the MV adsorption process on Chit-SA/ALG. The maximum adsorption capacity of Chit-SA/ALG, as calculated by the Langmuir model, was found to be 115.6 mg/g. The remarkable adsorption of MV onto Chit-SA/ALG can be primarily attributed to the electrostatic forces between Chit-SA/ALG and MV as well as the involvement of various interactions such as n-π, π-π, and H-bond interactions. This research demonstrates that Chit-SA/ALG exhibits promising potential as a highly efficient adsorbent for the removal of organic dyes from water systems.


The novelty of this work comes from introducing a new bio-organic based composite adsorbent of chitosan (Chit) biopolymer and algae (ALG) biomass. Moreover, the functionality and chemical stability of Chit­ALG composite was further developed by grafting process with salicylaldehyde (SA) using hydrothermal process. The incorporation of ALG biomass into polymeric matrix of Chit and grafting process with SA makes Chit a unique hybrid adsorbent toward cationic dye (methyl violet dye).


Asunto(s)
Aldehídos , Quitosano , Colorantes , Violeta de Genciana , Contaminantes Químicos del Agua , Quitosano/química , Adsorción , Colorantes/química , Cinética , Biodegradación Ambiental
8.
Int J Phytoremediation ; 26(4): 459-471, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37583281

RESUMEN

This work aims to apply the use of food-grade algae (FGA) composited with chitosan-benzaldehyde Schiff base biopolymer (CHA-BD) as a new adsorbent (CHA-BA/FGA) for methyl violet 2B (MV 2B) dye removal from aqueous solutions. The effect of three processing variables, including CHA-BA/FGA dosage (0.02-0.1 g/100 mL), pH solution (4-10), and contact duration (10-120 min) on the removal of MV 2B was investigated using the Box-Behnken design (BBD) model. Kinetic and equilibrium dye adsorption profiles reveal that the uptake of MV 2B dye by CHA-BA/FGA is described by the pseudo-second kinetics and the Langmuir models. The thermodynamics of the adsorption process (ΔG°, ΔH°, and ΔS°) reveal spontaneous and favorable adsorption parameters of MV 2B dye onto the CHA-BA/FGA biocomposite at ambient conditions. The CHA-BA/FGA exhibited the maximum ability to absorb MV 2B of 126.51 mg/g (operating conditions: CHA-BA/FGA dose = 0.09 g/100 mL, solution pH = 8.68, and temperature = 25 °C). Various interactions, including H-bonding, electrostatic forces, π-π stacking, and n-π stacking provide an account of the hypothesized mechanism of MV 2B adsorption onto the surface of CHA-BA/FGA. This research reveals that CHA-BA/FGA with its unique biocomposite structure and favorable adsorption properties can be used to remove harmful cationic dyes from wastewater.


The first novel aspect of this research work comes from the utilization of food-grade algae which contains various types of negative functional groups hydroxyl, carboxyl, and phosphate to modify a cationic biopolymer (Chitosan) to improve its adsorptive property toward removal of a cationic dye such as methyl violet 2B. The second novel aspect of this research work is to use the hydrothermal process to assist the grafting of an aromatic ring of benzaldehyde into the polymer matrix of the chitosan-food grade algae composite via a Schiff base linkage to improve its chemical stability and functionality.


Asunto(s)
Quitosano , Colorantes de Rosanilina , Contaminantes Químicos del Agua , Colorantes/química , Quitosano/química , Violeta de Genciana/química , Bases de Schiff/química , Benzaldehídos , Concentración de Iones de Hidrógeno , Biodegradación Ambiental , Termodinámica , Adsorción , Cinética , Contaminantes Químicos del Agua/química
9.
Int J Phytoremediation ; 26(8): 1243-1252, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38265045

RESUMEN

There are scarce data regarding the effects of soil amendments on biophysicochemical responses of plants at the early stages of growth/germination. This study critically compares the effects of ethylene-diamine-tetra-acetic-acid (EDTA) and calcium (Ca) on biophysicochemical responses of germinating pea seedlings under varied arsenic levels (As, 25, 125, 250 µM). Arsenic alone enhanced hydrogen peroxide (H2O2) level in pea roots (176%) and shoot (89%), which significantly reduced seed germination percentage, pigment contents, and growth parameters. Presence of EDTA and Ca in growth culture minimized the toxic effects of As on pea seedlings, EDTA being more pertinent than Ca. Both the amendments decreased H2O2 levels in pea tissues (16% in shoot and 13% in roots by EDTA, and 7% by Ca in shoot), and maintained seed germination, pigment contents, and growth parameters of peas close to those of the control treatment. The effects of all As-treatments were more pronounced in the pea roots than in the shoot. The presence of organic and inorganic amendments can play a useful role in alleviating As toxicity at the early stages of pea growth. The scarcity of data demands comparing plant biophysicochemical responses at different stages of plant growth (germinating vs mature) in future studies.


Till date, abundant research has focused on plant biophysicochemical responses to different types of pollutants. However, the majority of these studies dealt with pollutant exposure to mature plants (generally after a vegetative growth period of 1­2 weeks). Despite significant research, there are still limited data regarding the biophysicochemical responses of plants at their early stages of germination and growth. In fact, stresses at germination or at an early stage of growth can be highly fatal and may significantly affect the ultimate plant growth and potential to remediate the contaminated sites. Therefore, the current study deals with the exposure of germinating pea seedlings to arsenic (As) stress under varied amendments. This experimental plan helped to understand the initial biophysicochemical changes induced in pea plants under As stress.


Asunto(s)
Arsénico , Germinación , Pisum sativum , Plantones , Contaminantes del Suelo , Pisum sativum/efectos de los fármacos , Pisum sativum/fisiología , Plantones/crecimiento & desarrollo , Germinación/efectos de los fármacos , Arsénico/metabolismo , Contaminantes del Suelo/metabolismo , Calcio/metabolismo , Ácido Edético/farmacología , Biodegradación Ambiental , Peróxido de Hidrógeno/metabolismo , Raíces de Plantas , Estrés Fisiológico
10.
Anal Biochem ; 677: 115268, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37524223

RESUMEN

A polymer-based nanosensor and electrochemical methods were developed for the quantitative analysis of vanillin. The sample preparation was done using nano solid phase micro membrane tip extraction (NSPMMTE). A novel poly(phenylalanine)/TiO2/CPE sensor was built as the working electrode for the first time for the analysis of the vanillin substance. The electrochemical behavior and analytical performance of vanillin were examined in detail by cyclic voltammetry (CV) and differential pulse stripping voltammetry (DPSV) techniques via the oxidation process. The optimized modules of the DPSV technique that affected the vanillin peak current and peak potential were pH, pulse amplitude, step potential, and deposition time. The electroactive surface areas of bare CPE, TiO2/CPE, and poly(phenylalanine)/TiO2/CPE electrodes were found to be 0.135 cm2, 0.155 cm2, and 0.221 cm2, respectively. The limit of detection (LOD) was 32.6 µg/L in the 0.25-15.0 mg/L working range at pH 7.0. The selectivity of the proposed DPSV method for the determination of vanillin on the modified electrode was investigated in the presence of various organic and inorganic substances, and the determination of vanillin with high recovery was achieved with less than 5% relative error. The analytical application was applied in chocolate samples and the DPSV method was found highly efficient, reproducible, and selective.


Asunto(s)
Chocolate , Titanio/química , Polímeros/química , Técnicas Electroquímicas/métodos , Electrodos , Carbono/química
11.
Environ Res ; 216(Pt 3): 114665, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36334828

RESUMEN

In the present work, mixed-spinel ferrite anchored onto graphitic carbon nitride (GCN) was synthesized for mineralization of antibiotic pollutant from waste water. A Z-scheme g-C3N4/Ni0.5Zn0.5Fe2O4 nano heterojunction was fabricated by three step procedure: pyrolysis, solution combustion and mechanical grinding followed by annealing. The prepared photocatlyst was tested for degradation of Doxycycline (DC) drug under the natural sun light. Results revealed that the prepared heterojunction has maximum degradation efficiency of 97.10% pollutant in 60 min experiment. The Z-scheme heterojunction between g-C3N4 and Ni-Zn ferrite improves the photoinduced charges separation and protection of redox capability and therby increases the photo degradation efficiency. The scavenging experiments suggested that O2-● and h+ as main active species responsible for degradation of the antibiotic. In addition, the dopant variation can drive the shists in band gap and energy band positiong too which makes then excellent candidates for synthesizing tunable heterostructures with organic semiconductors. The work focusses on designing and developing of saimpler but efficient magnetic heterojunctions with superior redox capability for solar powered waste water treatment.


Asunto(s)
Doxiciclina , Contaminantes Ambientales , Catálisis , Luz , Antibacterianos , Zinc
12.
J Sep Sci ; 46(21): e2300582, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37675810

RESUMEN

The extraction of berberine was carried out from Berberis vulgaris, Berberis aquifolium, and Hydrastis canadensis plants using ethanol and water (70:30, v/v). The extracted berberine was characterized by ultraviolet-visible and Fourier-transform infrared spectroscopy. The purity of berberine was ascertained by thin-layer chromatography using n-propanol-formic acid-water (95:1:4) and (90:1:9) solvents. hRf values were in the range of 44-49 with compact spots (diameter 0.2-0.4 cm). HPLC was carried out using ammonium acetate buffer and acetonitrile in gradient mode with Zodiac (4.6 × 150 mm, 3 µm) column. The flow rate was 1.0 mL/min and detection was at 220 nm. The values of separation and resolution factors of the standard and the extracted berberine were in the range of 1.13-1.16 and 1.40-1.71, respectively. A comparison has shown that both thin-layer chromatography and high-performance liquid chromatography (HPLC) methods found applications in different situations and requirements. The extracted berberine samples were used to treat Leishmaniosis and the results showed better activity of berberine in comparison to the standard drug Amphotericin B. Briefly, the reported research is a novel and may be used to extract berberine from plants, separation and identification of berberine by thin layer chromatography and HPLC and to treat Leishmaniosis.


Asunto(s)
Berberina , Berberina/química , Cromatografía Líquida de Alta Presión/métodos , Cromatografía en Capa Delgada/métodos , Solventes/análisis , Agua
13.
Int J Phytoremediation ; : 1-12, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38084662

RESUMEN

In this study, pineapple crown (PC) feedstock residues were utilized as a potential precursor toward producing activated carbon (PCAC) via pyrolysis induced with ZnCl2 activation. The PCAC has a surface area (457.8 m2/g) and a mesoporous structure with an average pore diameter of 3.35 nm, according to the Brunauer-Emmett-Teller estimate. The removal of cationic dye (Fuchsin basic; FB) was used for investigating the adsorption parameters of PCAC. The optimization of significant adsorption variables (A: PCAC dose (0.02-0.1 g/100 mL); B: pH (4-10); C: time (10-90); and D: initial FB concentration (10-50 mg/L) was conducted using the Box-Behnken design (BBD). The pseudo-second-order (PSO) model characterized the dye adsorption kinetic profile, whereas the Freundlich model reflected the equilibrium adsorption profile. The maximum adsorption capacity (qmax) of PCAC for FB dye was determined to be 171.5 mg/g. Numerous factors contribute to the FB dye adsorption mechanism onto the surface of PCAC, which include electrostatic attraction, H-bonding, pore diffusion, and π-π stacking. This study illustrates the utilization of PC biomass feedstock for the fabrication of PCAC and its successful application in wastewater remediation.

14.
Int J Phytoremediation ; 25(14): 1988-2000, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37291893

RESUMEN

This research aims to convert pomegranate peel (PP) into microporous activated carbon (PPAC) using a microwave assisted K2CO3 activation method. The optimum activation conditions were carried out with a 1:2 PP/K2CO3 impregnation ratio, radiation power 800 W, and 15 min irradiation time. The statistical Box-Behnken design (BBD) was employed as an effective tool for optimizing the factors that influence the adsorption performance and removal of methylene blue (MB) dye. The output data of BBD with a desirability function indicate a 94.8% removal of 100 mg/L MB at the following experimental conditions: PPAC dose of 0.08 g, solution pH of 7.45, process temperature of 32.1 °C, and a time of 30 min. The pseudo-second order (PSO) kinetic model accounted for the contact time for the adsorption of MB. At equilibrium conditions, the Freundlich adsorption isotherm describes the adsorption results, where the maximum adsorption capacity of PPAC for MB dye was 291.5 mg g-1. This study supports the utilization of biomass waste from pomegranate peels and conversion into renewable and sustainable adsorbent materials. As well, this work contributes to the management of waste biomass and water pollutant sequestration.


The novelty of this research work comes from the conversion of the biomass waste, namely; the conversion of pomegranate peel (PP) into microporous activated carbon (PPAC) via a microwave assisted K2CO3 activation process. The applicability of the PPAC toward the removal of methylene blue dye (MB) was statistically optimized using Box Behnken design in the response surface methodology (BBD-RSM).


Asunto(s)
Granada (Fruta) , Contaminantes Químicos del Agua , Azul de Metileno , Carbón Orgánico , Adsorción , Microondas , Biodegradación Ambiental , Cinética , Concentración de Iones de Hidrógeno
15.
Int J Phytoremediation ; 25(9): 1142-1154, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36305491

RESUMEN

A low-cost fruit waste namely watermelon peel (WMP) was utilized as a promising precursor for the preparation of mesoporous activated carbon (WMP-AC) via microwave assisted-K2CO3 activation. The WMP-AC was applied as an adsorbent for methylene blue dye (MB) removal. Several types of characterizations, such as specific surface area (BET), Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy (SEM-EDX), Elemental Analysis (CHNS/O), and Fourier Transform Infrared Spectroscopy (FTIR) were used to identify the physicochemical properties of WMP-AC. Furthermore, Box-Behnken design (BBD) was applied to optimize the influence of the adsorption operational variables (contact time, adsorbent dose, working temperature, and solution pH) on MB dye adsorption. Thus, based on significant interactions, the optimum BBD output shows the best removal of 50 mg·L-1 MB (92%) was recorded at an adsorbent dose of 0.056 g, contact time of 4.4 min, working temperature of 39 °C, and solution pH 8.4. The Langmuir uptake capacity of WMP-AC was found to be 312.8 mg·g-1, with the best fitness to the pseudo-second-order kinetics model and an endothermic adsorption process. The adsorption mechanisms of MB by WMP-AC can be assigned to the hydrogen bonding, electrostatic attraction, and π-π stacking. The findings of this study indicate that WMP is a promising precursor for producing porous activated carbon for MB dye removal.


The novelty of this research work comes from the conversion of the domestic fruit waste namely watermelon peels into mesoporous activated carbon by the fast and convenient activation method of microwave-assisted chemical activation. The produced activated carbon was applied for the removal of a toxic organic dye. Furthermore, the statistical optimization by using response surface methodology was applied to optimize the adsorption key parameters.


Asunto(s)
Azul de Metileno , Contaminantes Químicos del Agua , Azul de Metileno/química , Carbón Orgánico/química , Frutas , Adsorción , Microondas , Contaminantes Químicos del Agua/química , Biodegradación Ambiental , Cinética , Concentración de Iones de Hidrógeno
16.
Int J Phytoremediation ; 25(12): 1567-1578, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36794599

RESUMEN

Herein, tropical fruit biomass wastes including durian seeds (DS) and rambutan peels (RP) were used as sustainable precursors for preparing activated carbon (DSRPAC) using microwave-induced H3PO4 activation. The textural and physicochemical characteristics of DSRPAC were investigated by N2 adsorption-desorption isotherms, X-ray diffraction, Fourier transform infrared, point of zero charge, and scanning electron microscope analyses. These findings reveal that the DSRPAC has a mean pore diameter of 3.79 nm and a specific surface area of 104.2 m2/g. DSRPAC was applied as a green adsorbent to extensively investigate the removal of an organic dye (methylene blue, MB) from aqueous solutions. The response surface methodology Box-Behnken design (RSM-BBD) was used to evaluate the vital adsorption characteristics, which included (A) DSRPAC dosage (0.02-0.12 g/L), (B) pH (4-10), and (C) time (10-70 min). The BBD model specified that the DSRPAC dosage (0.12 g/L), pH (10), and time (40 min) parameters caused the largest removal of MB (82.1%). The adsorption isotherm findings reveal that MB adsorption pursues the Freundlich model, whereas the kinetic data can be well described by the pseudo-first-order and pseudo-second-order models. DSRPAC exhibited good MB adsorption capability (118.5 mg/g). Several mechanisms control MB adsorption by the DSRPAC, including electrostatic forces, π-π stacking, and H-bonding. This work shows that DSRPAC derived from DS and RP could serve as a viable adsorbent for the treatment of industrial effluents containing organic dye.


The novelty of this research work comes from the conversion of the mixed biomass wastes from tropical fruit including durian seeds and rambutan peels as precursor for activated carbon (DSRPAC) using microwave assisted H3PO4 activation. The effectiveness of DSRPAC as promising adsorbent was tested for methylene blue (MB) dye adsorption. Furthermore, response surface methodology with Box Behnken design (RSM-BBD) was applied to optimize the adsorption key parameters. A tailored adsorption mechanism of MB on the surface of DSRPAC was proposed.


Asunto(s)
Bombacaceae , Contaminantes Químicos del Agua , Azul de Metileno/análisis , Adsorción , Carbón Orgánico , Microondas , Frutas/química , Contaminantes Químicos del Agua/análisis , Biodegradación Ambiental , Colorantes , Cinética , Semillas/química , Concentración de Iones de Hidrógeno
17.
Environ Geochem Health ; 45(12): 8943-8952, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37442923

RESUMEN

Groundwater is the most valuable natural source in our earth's planet, being contaminated in various regions worldwide. Despite considerable research, there are scarce data regarding arsenic (As) levels in groundwater and its build-up in biological samples in Pakistan. The current investigation analyzed As contamination in four tehsils of District Khanewal (Kabirwala tehsil, Jahaniyan tehsil, Mian Channu tehsil, and Khanewal tehsil). For that, 123 groundwater samples, 19 animal milk samples, 20 human nails, and 20 human hair samples were collected from the study area. Arsenic concentration in groundwater was up to 51.8 µg/L with an average value of 7.2 µg/L. About 28 water samples (23%) had As contents > WHO limit and 38 samples (31%) > DEP-NJ limit. Low levels of As were detected in biological samples. Average As levels were 23 µg/L in the milk samples and 298 µg/kg in human hair. Arsenic contents were not detected in nail samples, except in one sample from Kabirwala tehsil. The maximum values of hazard quotient and cancer risk in District Khanewal were 4.9 and 0.0022, respectively. It is anticipated that long-term use of As-containing water may led to poisoning of humans in the study area, especially in Kabirwala. Therefore, it is necessary to monitor As contamination in the groundwater of Kabirwala tehsil to reduce the potential health hazards.


Asunto(s)
Arsénico , Agua Potable , Agua Subterránea , Contaminantes Químicos del Agua , Humanos , Arsénico/análisis , Pakistán , Contaminantes Químicos del Agua/análisis , Medición de Riesgo , Agua Potable/análisis
18.
Environ Geochem Health ; 45(12): 9003-9016, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37266751

RESUMEN

Chromium (Cr), due to its greater contamination in aquifers and distinct eco-toxic impacts, is of greater environmental concern. This study aimed to synthesize nanocomposites of almond shells biochar (BC) with zerovalent bismuth and/or copper (Bi0/BC, Cu0/BC, and Bi0-Cu0/BC) for the removal of Cr from aqueous solution. The synthesized nanocomposites were investigated using various characterization techniques such as XRD, FTIR spectroscopy, SEM, and EDX. The Cr removal potential by the nanocomposites was explored under different Cr concentrations (25-100 mg/L), adsorbent doses (0.5-2.0 g/L), solution pH (2-8), and contact time (10-160 min). The above-mentioned advanced techniques verified successful formation of Bi0/Cu0 and their composite with BC. The synthesized nanocomposites were highly effective in the removal of Cr. The Bi0-Cu0/BC nano-biocomposites showed higher Cr removal efficiency (92%) compared to Cu0/BC (85%), Bi0/BC (76%), and BC (67%). The prepared nanocomposites led to effective Cr removal at lower Cr concentrations (25 mg/L) and acidic pH (4.0). The Cr solubility changes with pH, resulting in different degrees of Cr removal by Bi0-Cu0/BC, with Cr(VI) being more soluble and easier to adsorb at low pH levels and Cr(III) being less soluble and more difficult to adsorb at high pH levels. The experimental Cr adsorption well fitted with the Freundlich adsorption isotherm model (R2 > 0.99) and pseudo-second-order kinetic model. Among the prepared nanocomposites, the Bi0-Cu0/BC showed greater stability and reusability. It was established that the as-synthesized Bi0-Cu0/BC nano-biocomposite showed excellent adsorption potential for practical Cr removal from contaminated water.


Asunto(s)
Nanocompuestos , Contaminantes Químicos del Agua , Cromo/análisis , Cobre , Contaminantes Químicos del Agua/análisis , Carbón Orgánico/química , Agua/química , Adsorción , Cinética , Concentración de Iones de Hidrógeno
19.
Environ Geochem Health ; 45(12): 8989-9002, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37154973

RESUMEN

Batch scale removal of arsenic (As) from aqueous media was explored using nano-zero valent iron (Fe0) and copper (Cu0) particles. The synthesized particles were characterized using a Brunauer-Emmett-Teller (BET) surface area analyzer, a scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FTIR). The BET result showed that the surface area (31.5 m2/g) and pore volume (0.0415 cm3/g) of synthesized Fe0 were higher than the surface area (17.56 m2/g) and pore volume (0.0287 cm3/g) of Cu0. The SEM results showed that the morphology of the Fe0 and Cu0 was flowery microspheres and highly agglomerated with thin flakes. The FTIR spectra for Fe0 showed broad and intense peaks as compared to Cu0. The effects of the adsorbent dose (1-4 g/L), initial concentration of As (2 mg/L to 10 mg/L) and solution pH (2-12) were evaluated on the removal of As. Results revealed that effective removal of As was obtained at pH 4 with Fe0 (94.95%) and Cu0 (74.86%). When the dosage increased from 1 to 4 g L-1, the As removal increased from 70.59 to 93.02% with Fe0 and from 67 to 70.59% with Cu0. However, increasing the initial As concentration decreased the As removal significantly. Health risk indices, including estimated daily intake (EDI), hazard quotient (HQ), and cancer risk (CR) were employed and a significant decline (up to 99%) in risk indices was observed in As-treated water using Fe0/Cu0. Among the adsorption isotherm models, the values of R2 showed that isothermal As adsorption by Fe0 and Cu0 was well explained by the Freundlich adsorption isotherm model (R2 > 0.98) while the kinetic experimental data was well-fitted with the Pseudo second order model. The Fe0 showed excellent stability and reusability over five sorption cycles, and it was concluded that, compared to the Cu0, the Fe0 could be a promising technology for remediating As-contaminated groundwater.


Asunto(s)
Arsénico , Contaminantes Químicos del Agua , Cobre , Agua/química , Hierro/química , Cinética , Adsorción , Contaminantes Químicos del Agua/análisis , Concentración de Iones de Hidrógeno
20.
Environ Monit Assess ; 195(3): 438, 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36862255

RESUMEN

Untreated wastewater is routinely used for agricultural activities in water-stressed regions, thereby causing severe ecological risks by various pollutants. Hence, management strategies are needed to cope with the environmental issues related to wastewater use in agriculture. This pot study evaluates the effect of mixing either freshwater (FW) or groundwater (GW) with sewage water (SW) on the buildup of potentially toxic elements (PTEs) in soil and maize crop. Results revealed that SW of Vehari contains high levels of Cd (0.08 mg L-1) and Cr (2.3 mg L-1). Mixing of FW and GW with SW increased soil contents of As (22%) and decreased Cd (1%), Cu (1%), Fe (3%), Mn (9%), Ni (9%), Pb (10%), and Zn (4%) than SW "alone" treatment. Risk indices showed high-degree of soil-contamination and very-high ecological risks. Maize accumulated considerable concentrations of PTEs in roots and shoot with bioconcentration factor > 1 for Cd, Cu, and Pb and transfer factor > 1 for As, Fe, Mn, and Ni. Overall, mixed treatments increased plant contents of As (118%), Cu (7%), Mn (8%), Ni (55%), and Zn (1%), while decreased those of Cd (7%), Fe (5%), and Pb (1%) compared to SW "alone" treatments. Risk indices predicted possible carcinogenic risks to cow (CR 0.003 > 0.0001) and sheep (CR 0.0121 > 0.0001) due to consumption of maize fodder containing PTEs. Hence, to minimize possible environmental/health hazards, mixing of FW and GW with SW can be an effective strategy. However, the recommendation greatly depends on the composition of mixing waters.


Asunto(s)
Suelo , Aguas Residuales , Bovinos , Femenino , Animales , Ovinos , Zea mays , Cadmio , Plomo , Monitoreo del Ambiente , Agua Dulce , Agua , Aguas del Alcantarillado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA