Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Ophthalmic Res ; 66(1): 1254-1265, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37722372

RESUMEN

INTRODUCTION: The purpose of this work was to evaluate the in vitro growth capacity and functionality of human corneal endothelial cells (hCEC) expanded from corneas of elderly (>60 years) donors that were preserved using an organotypic culture method (>15 days, 31°C) and did not meet the clinical criteria for keratoplasty. METHODS: Cell cultures were obtained from prior descemetorhexis (≥10 mm) and a controlled incubation with collagenase type I followed by recombinant trypsin. Cells were seeded on coated plates (fibronectin-albumin-collagen I) and cultures were expanded using the dual supplemented medium approach (maintenance medium and growth medium), in the presence of a 10 µm Rho-associated protein kinase inhibitor (Y-27632). Cell passages were obtained at culture confluency (∼2 weeks). A quantitative colorimetric WST-1 cell growth assay was performed at different time points of the culture. Morphometric analysis (area assessment and circularity), immunocytochemistry (ZO-1, Na+/K+-ATPase α, Ki67), and transendothelial electrical resistance (TEER) were performed on confluent monolayers. RESULTS: There was no difference between the cell growth profiles of hCEC cultures obtained from corneas older than 60 years, whether preserved cold or cultivated organotypic corneas. Primary cultures were able to maintain a certain cell circularity index (around 0.8) and morphology (hexagonal) similar to corneal endothelial mosaic. The ZO-1 and Na+/K+-ATPase pump markers were highly positive in confluent cell monolayers at 21 days after isolation (passage 0; P0), but significantly decreased in confluent monolayers after the first passage (P1). A weak expression of Ki67 was observed in both P0 and P1 monolayers. The P0 monolayers showed a progressive increase in TEER values between days 6 and 11 and remained stable until day 18 of culture, indicating a state of controlled permeability in monolayers. The P1 monolayers also showed some functional ability but with decreased TEER values compared to monolayers at P0. CONCLUSIONS: Our results indicate that it is possible to obtain functional hCEC cultures in eye banks, using simplified and standardized protocols, from older donor corneas (>60 years of age), previously preserved under organotypic culture conditions. This tissue is more readily available in our setting, due to the profile of the donor population or due to the low endothelial count (<2,000 cells/mm2) of the donated cornea.


Asunto(s)
Trasplante de Córnea , Células Endoteliales , Humanos , Anciano , Antígeno Ki-67/metabolismo , Células Cultivadas , Córnea , Endotelio Corneal , Adenosina Trifosfatasas/metabolismo , Recuento de Células
2.
Stem Cell Res Ther ; 10(1): 374, 2019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31801638

RESUMEN

BACKGROUND: Limbal stem cells (LSC) sustain the corneal integrity and homeostasis. LSC deficiency (LSCD) leads to loss of corneal transparency and blindness. A clinical approach to treat unilateral LSCD comprises autologous cultured limbal epithelial stem cell transplantation (CLET). CLET uses xenobiotic culture systems with potential zoonotic transmission risks, and regulatory guidelines make necessary to find xenofree alternatives. METHODS: We compared two xenofree clinical grade media and two feeder layers. We used CnT07, a defined commercial medium for keratinocytes, and a modified xenofree supplemented hormonal epithelial medium with human serum (XSHEM). Optimal formulation was used to compare two feeder layers: the gold standard 3T3 murine fibroblasts and human processed lipoaspirate cells (PLA). We tested the expressions of ΔNp63α and cytokeratin 3 and 12 by qPCR and immunofluorescence. Morphology, viability, clonogenicity, proliferation, and cell growth assays were carried out. We also evaluated interleukin 6 (IL-6) and stromal-derived factor 1 (SDF-1) by qPCR and ELISA. RESULTS: XSHEM maintained better LSC culture viability and morphology than CnT07. Irradiated PLA feeder cells improved the undifferentiated state of LSC and enhanced their growth and clonogenicity stimulating IL-6 secretion and SDF-1 expression, as well as increased proliferation and cell growth when compared with irradiated 3T3 feeder cells. CONCLUSIONS: The combination of XSHEM and PLA feeder cells efficiently sustained LSC xenofree cultures for clinical application. Moreover, PLA feeder layers were able to improve the LSC potential characteristics. Our results would have direct clinical application in CLET for advanced therapy.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Limbo de la Córnea/citología , Células Madre/metabolismo , Células 3T3 , Animales , Técnicas de Cultivo de Célula , Diferenciación Celular , Proliferación Celular , Supervivencia Celular , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Epitelio Corneal/citología , Epitelio Corneal/metabolismo , Células Nutrientes , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Queratina-12/genética , Queratina-12/metabolismo , Queratina-3/genética , Queratina-3/metabolismo , Ratones , Células Madre/citología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
3.
Tissue Eng Part A ; 24(5-6): 394-406, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28873332

RESUMEN

Islet transplantation has provided proof of concept that cell therapy can restore normoglycemia in patients with diabetes. However, limited availability of islet tissue severely restricts the clinical use of the treatment. Thus, there is an urgent need to develop new strategies to generate an abundant source of insulin-producing cells that could be used to treat diabetes. A potential approach is the in vitro expansion of pancreatic beta cells obtained from cadaveric organ donors. However, when human beta cells are expanded in vitro, they dedifferentiate and lose the expression of insulin, probably as a consequence of pancreatic islet dissociation into single cells. We have studied whether reestablishment of cell-cell and cell-matrix relationships with a biomimetic synthetic scaffold could induce redifferentiation of expanded dedifferentiated beta cells. Cells isolated from human islet preparations were expanded in monolayer cultures and allowed to reaggregate into islet-like cell clusters (ICCs). Afterward, ICCs were embedded between two thin layers of the noninstructive self-assembling peptide (SAP), RAD16-I or RAD16-I functionalized with the integrin-binding motif RGD (RAD16-I/RGD) (R: arginine, G: glycine, D: aspartic acid), which was expected to promote cell-extracellular matrix interactions. ICCs cultured with RAD16-I were viable, maintained their cluster conformation, and increased in size by aggregation of ICCs, suggesting a self-organizing process. ICCs cultured in RAD16-I/RGD showed enhanced cell adhesion to RAD16-I matrix and reexpression of the beta cell-specific genes, Ins, Pdx1, Nkx6.1, and MafA. Redifferentiation was caused solely by bioactive cues introduced to the RAD16-I peptide since no differentiation factors were added to the culture medium. The results indicate that RGD-functionalized SAP in sandwich conformation is a promising three-dimensional platform to induce redifferentiation toward a beta cell phenotype and to generate insulin-expressing cells that could be used in diabetes therapy.


Asunto(s)
Antígenos de Diferenciación/biosíntesis , Diferenciación Celular/efectos de los fármacos , Matriz Extracelular , Células Secretoras de Insulina/metabolismo , Oligopéptidos/farmacología , Técnicas de Cultivo de Célula , Células Cultivadas , Humanos , Células Secretoras de Insulina/citología , Oligopéptidos/química
4.
PLoS One ; 13(1): e0191104, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29360826

RESUMEN

BACKGROUND: ß-cells undergo an epithelial to mesenchymal transition (EMT) when expanded in monolayer culture and give rise to highly proliferative mesenchymal cells that retain the potential to re-differentiate into insulin-producing cells. OBJECTIVE: To investigate whether EMT takes place in the endocrine non-ß cells of human islets. METHODOLOGY: Human islets isolated from 12 multiorgan donors were dissociated into single cells, purified by magnetic cell sorting, and cultured in monolayer. RESULTS: Co-expression of insulin and the mesenchymal marker vimentin was identified within the first passage (p1) and increased subsequently (insulin+vimentin+ 7.2±6% at p1; 43±15% at p4). The endocrine non-ß-cells did also co-express vimentin (glucagon+vimentin+ 59±1.5% and 93±6%, somatostatin+vimentin+ 16±9.4% and 90±10% at p1 and p4 respectively; PP+vimentin+ 74±14% at p1; 88±12% at p2). The percentage of cells expressing only endocrine markers was progressively reduced (0.6±0.2% insulin+, 0.2±0.1% glucagon+, and 0.3±0.2% somatostatin+ cells at p4, and 0.7±0.3% PP+ cells at p2. Changes in gene expression were also indicated of EMT, with reduced expression of endocrine markers and the epithelial marker CDH-1 (p<0.01), and increased expression of mesenchymal markers (CDH-2, SNAI2, ZEB1, ZEB2, VIM, NT5E and ACTA2; p<0.05). Treatment with the EMT inhibitor A83-01 significantly reduced the percentage of co-expressing cells and preserved the expression of endocrine markers. CONCLUSIONS: In adult human islets, all four endocrine islet cell types undergo EMT when islet cells are expanded in monolayer conditions. The presence of EMT in all islet endocrine cells could be relevant to design of strategies aiming to re-differentiate the expanded islet cells towards a ß-cell phenotype.


Asunto(s)
Transición Epitelial-Mesenquimal , Islotes Pancreáticos/citología , Adulto , Biomarcadores/metabolismo , Muerte Celular , Separación Celular , Células Cultivadas , Humanos , Islotes Pancreáticos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA