Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Med ; 105: 102503, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36529006

RESUMEN

PURPOSE: To evaluate the feasibility of comprehensive automation of an intra-cranial proton treatment planning. MATERIALS AND METHODS: Class solution (CS) beam configuration selection allows the user to identify predefined beam configuration based on target localization; automatic CS (aCS) will then explore all the possible CS beam geometries. Ten patients, already used for the evaluation of the automatic selection of the beam configuration, have been also employed to training an algorithm based on the computation of a benchmark dose exploit automatic general planning solution (GPS) optimization with a wish list approach for the planning optimization. An independent cohort of ten patients has been then used for the evaluation step between the clinical and the GPS plan in terms of dosimetric quality of plans and the time needed to generate a plan. RESULTS: The definition of a beam configuration requires on average 22 min (range 9-29 min). The average time for GPS plan generation is 18 min (range 7-26 min). Median dose differences (GPS-Manual) for each OAR constraints are: brainstem -1.60 Gy, left cochlea -1.22 Gy, right cochlea -1.42 Gy, left eye 0.55 Gy, right eye -2.33 Gy, optic chiasm -1.87 Gy, left optic nerve -4.45 Gy, right optic nerve -2.48 Gy and optic tract -0.31 Gy. Dosimetric CS and aCS plan evaluation shows a slightly worsening of the OARs values except for the optic tract and optic chiasm for both CS and aCS, where better results have been observed. CONCLUSION: This study has shown the feasibility and implementation of the automatic planning system for intracranial tumors. The method developed in this work is ready to be implemented in a clinical workflow.


Asunto(s)
Neoplasias Encefálicas , Terapia de Protones , Radioterapia de Intensidad Modulada , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Protones , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos , Terapia de Protones/métodos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/radioterapia , Órganos en Riesgo
2.
Br J Radiol ; 94(1119): 20201354, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33481637

RESUMEN

OBJECTIVES: This multicentric study was carried out to investigate the impact of small field output factors (OFs) inaccuracies on the calculated dose in volumetric arctherapy (VMAT) radiosurgery brain plans. METHODS: Nine centres, realised the same five VMAT plans with common planning rules and their specific clinical equipment Linac/treatment planning system commissioned with their OFs measured values (OFbaseline). In order to simulate OFs errors, two new OFs sets were generated for each centre by changing only the OFs values of the smallest field sizes (from 3.2 × 3.2 cm2 to 1 × 1 cm2) with well-defined amounts (positive and negative). Consequently, two virtual machines for each centre were recommissioned using the new OFs and the percentage dose differences ΔD (%) between the baseline plans and the same plans recalculated using the incremented (OFup) and decremented (OFdown) values were evaluated. The ΔD (%) were analysed in terms of planning target volume (PTV) coverage and organs at risk (OARs) sparing at selected dose/volume points. RESULTS: The plans recalculated with OFdown sets resulted in higher variation of doses than baseline within 1.6 and 3.4% to PTVs and OARs respectively; while the plans with OFup sets resulted in lower variation within 1.3% to both PTVs and OARs. Our analysis highlights that OFs variations affect calculated dose depending on the algorithm and on the delivery mode (field jaw/MLC-defined). The Monte Carlo (MC) algorithm resulted significantly more sensitive to OFs variations than all of the other algorithms. CONCLUSION: The aim of our study was to evaluate how small fields OFs inaccuracies can affect the dose calculation in VMAT brain radiosurgery treatments plans. It was observed that simulated OFs errors, return dosimetric calculation accuracies within the 3% between concurrent plans analysed in terms of percentage dose differences at selected dose/volume points of the PTV coverage and OARs sparing. ADVANCES IN KNOWLEDGE: First multicentre study involving different Planning/Linacs about undetectable errors in commissioning output factor for small fields.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/radioterapia , Radiocirugia/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Tomografía Computarizada por Rayos X/métodos , Encéfalo/diagnóstico por imagen , Simulación por Computador , Humanos , Dosificación Radioterapéutica , Reproducibilidad de los Resultados , Incertidumbre
3.
Radiother Oncol ; 148: 126-132, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32361572

RESUMEN

PURPOSE: The first clinical genetic autoplanning algorithm (Genetic Planning Solution, GPS) was validated in ten radiotherapy centres for prostate cancer VMAT by comparison with manual planning (Manual). METHODS: Although there were large differences among centres in planning protocol, GPS was tuned with the data of a single centre and then applied everywhere without any centre-specific fine-tuning. For each centre, ten Manual plans were compared with autoGPS plans, considering dosimetric plan parameters and the Clinical Blind Score (CBS) resulting from blind clinician plan comparisons. AutoGPS plans were used as is, i.e. there was no patient-specific fine-tuning. RESULTS: For nine centres, all ten plans were clinically acceptable. In the remaining centre, only one plan was acceptable. For the 91% acceptable plans, differences between Manual and AutoGPS in target coverage were negligible. OAR doses were significantly lower in AutoGPS plans (p < 0.05); rectum D15% and Dmean were reduced by 8.1% and 17.9%, bladder D25% and Dmean by 5.9% and 10.3%. According to clinicians, 69% of the acceptable AutoGPS plans were superior to the corresponding Manual plan. In case of preferred Manual plans (31%), perceived advantages compared to autoGPS were minor. QA measurements demonstrated that autoGPS plans were deliverable. A quick configuration adjustment in the centre with unacceptable plans rendered 100% of plans acceptable. CONCLUSION: A novel, clinically applied genetic autoplanning algorithm was validated in 10 centres for in total 100 prostate cancer patients. High quality plans could be generated at different centres without centre-specific algorithm tuning.


Asunto(s)
Neoplasias de la Próstata , Radioterapia de Intensidad Modulada , Humanos , Masculino , Órganos en Riesgo , Neoplasias de la Próstata/radioterapia , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA