Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Langmuir ; 40(19): 10184-10194, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38699923

RESUMEN

We report the controlled synthesis of iron oxide microcubes (IOMCs) through the self-assembly arrays of ferric oxide hydroxide nanorods (NRs). The formation of IOMCs involves a complex interplay of nucleation, self-assembly, and growth mechanisms influenced by time, thermal treatment, and surfactant dynamics. The self-assembly of vertically aligned NRs into IOMCs is controlled by dynamic magnetism properties and capping agents like cetyltrimethylammonium bromide (CTAB), whose concentration and temperature modulation dictate growth kinetics and structural uniformity. These controlled structural growths were obtained via a hydrothermal process at 120 °C at various intervals of 8, 16, 24, and 32 h in the presence of CTAB as the capping agent. In this hydrothermal method, the formation of vertically oriented NR arrays was observed without the presence of ligands, binders, harsh drying techniques, and solvent evaporation. The formation of the self-assembly of NRs to IOMCs is obtained with an increase in saturated magnetization to attain the most stable state. The synthesized IOMCs have a uniform size, quasi-shape, and excellent dispersion. Due to its excellent magnetic and catalytic properties, IOMCs were employed to remove the various emerging pollutants known as per- and polyfluorinated substances (PFAS). Various microscopic and spectroscopic techniques were employed for the characterization and interaction studies of IOMCs with various PFAS. The interaction between IOMCs and perfluoroalkyl substances (PFAS) was investigated, revealing strong adsorption tendencies facilitated by electrostatic interactions, as evidenced by UV-vis and FT-IR spectroscopic studies. Furthermore, the higher magnetic and positive surface charge of IOMCs is responsible for an effective remediation eliminating any secondary pollution with ease of recovery after the sorption interaction studies, thereby making it practically worthwhile.

2.
Langmuir ; 40(3): 1707-1716, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38180900

RESUMEN

The impact of pH, temperature, and metal ions on the rheological and interfacial properties of aqueous mixed surfactant solutions composed of anionic NaC (sodium cholate) and nonionic BrijL4 [polyoxyethylene (4) lauryl ether] surfactants has been investigated. The various compound systems were analyzed, considering variations in each selected factor. The results highlight the unique characteristics of the BrijL4/NaC mixture, suggesting its potential as a viable alternative to other existing surfactants. The synergistic effect between BrijL4 and NaC significantly reduces the critical micelle concentration (CMC) and improves the wetting properties on hydrophobic surfaces, surpassing those of single-component solutions. Additionally, sodium, calcium, and magnesium ions enhance surface wetting and decrease the CMC. Besides, the BrijL4/NaC solutions exhibit viscoelastic fluid behavior at higher surfactant concentrations. These viscoelastic BrijL4/NaC solutions demonstrate stability over various pH and temperature variations, exhibiting lower flow activation and scission energy values than those of other viscoelastic surfactant solutions. Notably, the BrijL4/NaC mixture has potential applications in gel-based foliar fertilizers and drug delivery systems. Furthermore, the rheological studies examine the impact of humic acid on the rheological properties of BrijL4/NaC mixture solutions, revealing that incorporating additional humic acids can achieve stable rheological properties.

3.
J Environ Manage ; 365: 121517, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38908153

RESUMEN

In this study, treated wastewater and Multi-Stage Flash (MSF) brine were integrated into the Forward Osmosis (FO) system using pressure stimuli-responsive Nanofiltration (PSRNF) membranes to dilute magnesium, calcium, and sulfate MSF plant brine reject. The deposition of magnesium sulfate and calcium sulfate in the heat exchanger is one of the main issues affecting the performance and efficiency of MSF thermal desalination plants. Reducing the concentration of the divalent ions can minimize scale formation and deposition to a level that allows the MSF plant to operate at high top brine temperature (TBT) and without scale problems. The PSRNF membranes were chosen in the FO process because of their high water permeability, rejection of divalent and monovalent ions, small structure parameter (S), and inexpensiveness compared to commercial FO membranes. Three PSRNF membranes were tested in the FO process with the feed solution facing the active membrane layer to avoid active layer delamination. Although the PSRNF membrane exhibited negligible water flux at 0 bar, it increased when a 2-4 bar was applied to the feed solution. The wastewater temperature was set at 25 °C while 40 °C was the brine operational temperature to mimic the field situation. A maximum average water flux of 39.5 L/m2h was recorded at 4 bar feed pressure when the PSRNF membrane was used for the brine dilution, achieving up to 42% divalent ions dilution at 0.02 kWh/m3 specific power consumption. The average water flux in the PRSNF membrane was 35% higher than that in the commercial TFC FO membrane. Notably, the PSRNF membrane is ten times cheaper than commercial FO membranes. Notably, the PSRNF membrane is ten times cheaper than commercial FO membranes, achieving substantial cost reductions and pioneering advancements in FO purification technology.


Asunto(s)
Membranas Artificiales , Ósmosis , Aguas del Alcantarillado , Aguas Residuales , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos , Sales (Química)/química , Filtración , Temperatura
4.
Environ Res ; 215(Pt 1): 114286, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36096170

RESUMEN

Due to the implications of poly- and perfluoroalkyl substances (PFAS) on the environment and public health, great attention has been recently made to finding innovative materials and methods for PFAS removal. In this work, PFAS is considered universal contamination which can be found in many wastewater streams. Conventional materials and processes used to remove and degrade PFAS do not have enough competence to address the issue particularly when it comes to eliminating short-chain PFAS. This is mainly due to the large number of complex parameters that are involved in both material and process designs. Here, we took the advantage of artificial intelligence to introduce a model (XGBoost) in which material and process factors are considered simultaneously. This research applies a machine learning approach using data collected from reported articles to predict the PFAS removal factors. The XGBoost modeling provided accurate adsorption capacity, equilibrium, and removal estimates with the ability to predict the adsorption mechanisms. The performance comparison of adsorbents and the role of AI in one dominant are studied and reviewed for the first time, even though many studies have been carried out to develop PFAS removal through various adsorption methods such as ion exchange, nanofiltration, and activated carbon (AC). The model showed that pH is the most effective parameter to predict PFAS removal. The proposed model in this work can be extended for other micropollutants and can be used as a basic framework for future adsorbent design and process optimization.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Adsorción , Inteligencia Artificial , Carbón Orgánico , Fluorocarburos/análisis , Aprendizaje Automático , Aguas Residuales , Contaminantes Químicos del Agua/análisis
5.
J Environ Manage ; 294: 113024, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34139645

RESUMEN

This study reports landfill leachate treatment by the forward osmosis (FO) process using hydrogen peroxide (H2O2) for membrane cleaning. Although chemical cleaning is an effective method for fouling control, it could compromise membrane integrity. Thus, understanding the impact of chemical cleaning on the forward osmosis membrane is essential to improving the membrane performance and lifespan. Preliminary results revealed a flux recovery of 98% in the AL-FS mode (active layer facing feed solution) and 90% in the AL-DS (draw solution faces active layer) using 30% H2O2 solution diluted to 3% by pure water. The experimental work investigated the effects of chemical cleaning on the polyamide active and polysulfone support layers since the FO membrane could operate in both orientations. Results revealed that polysulfone support layer was more sensitive to H2O2 damage than the polyamide active at a neutral pH. The extended exposure of thin-film composite (TFC) FO membrane to H2O2 was investigated, and the active layer tolerated H2O2 for 72 h, and the support layer for only 40 h. Extended operation of the TFC FO membrane in the AL-FS based on a combination of physical (hydraulic flushing with DI water) and H2O2 was reported, and chemical cleaning with H2O2 could still recover 92% of the flux.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Estudios de Factibilidad , Peróxido de Hidrógeno , Membranas Artificiales , Ósmosis
6.
J Environ Manage ; 265: 110397, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32275235

RESUMEN

The present study focuses on modelling the removal of reactive azo dyes (Reactive Orange 16, Reactive Red 120 and Direct Red 80) by ozonolytic degradation. The process was optimised using One Variable at a Time (OVAT) approach followed by Response Surface Methodology (RSM). The operational parameters influencing the process of degradation, i.e. initial dye concentration (mg/L), pH and ozone exposure time were modelled using Central Composite Design (CCD). Under the optimal condition (Initial dye concentration = 2000 mg/L, pH = 11.0, Ozone exposure time = 10 min), the highest desirable response (i.e. Concentration of the degraded dye) for the degradation of RO 16, RR 120 and DR 80 are 1289.35 mg/L, 1224.98 mg/L and 1039.87 mg/L, respectively. The high correlation coefficients, 0.9814 (RO 16), 0.9815 (RR 120) and 0.9685 (DR 80) indicates the closeness of the results predicted by RSM with the experimental results. The rate of degradation for all the three dyes at the optimal condition followed pseudo-first order kinetics with the rate of reaction as 141 mg/L.min, 197.2 mg/L.min and 216.6 mg/Lmin. The predicted model was also evaluated by partial derivative-based equation modelling and experimental approach. The reliability and applicability of the developed process were confirmed by degrading the synthetic mixed dye effluent.


Asunto(s)
Compuestos Azo , Ozono , Colorantes , Reproducibilidad de los Resultados , Textiles
7.
Sci Total Environ ; 934: 173368, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38777064

RESUMEN

Perfluorooctanoic acid (PFOA) is a persistent compound, raising considerable global apprehension due to its resistance to breakdown and detrimental impacts on human health and aquatic environments. Pressure-driven membrane technologies treating PFAS-contaminated water are expensive and prone to fouling. This study presented a parametric investigation of the effectiveness of cellulose triacetate membrane in the forward osmosis (FO) membrane for removing PFOA from an aqueous solution. The study examined the influence of membrane orientation modes, feed pH, draw solution composition and concentration, and PFOA concentration on the performance of FO. The experimental results demonstrated that PFOA rejection was 99 % with MgCl2 and slightly >98 % with NaCl draw solutions due to the mechanism of PFOA binding to the membrane surface through Mg2+ ions. This finding highlights the crucial role of the draw solution's composition in PFOA treatment. Laboratory results revealed that membrane rejection of PFOA was 99 % at neutral and acidic pH levels but decreased to 95 % in an alkaline solution at pH 9. The decrease in membrane rejection is attributed to the dissociation of the membrane's functional groups, consequently causing pore swelling. The results were confirmed by calculating the average pore radius of the CTA membrane, which increased from 27.94 nm at pH 5 to 30.70 nm at pH 9. Also, variations in the PFOA concentration from 5 to 100 mg/L did not significantly impact the membrane rejection, indicating the process's capability to handle a wide range of PFOA concentrations. When seawater was the draw solution, the FO membrane rejected 99 % of PFOA concentrations ranging from 5 mg/L to 100 mg/L. The CTA FO treating PFOA-contaminated wastewater from soil remediation achieved a 90 % recovery rate and water flux recovery of 96.5 % after cleaning with DI water at 40 °C, followed by osmotic backwash. The results suggest the potential of using abundant and cost-effective natural solutions in the FO process, all without evident membrane fouling.

8.
Sci Total Environ ; 912: 169319, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38110094

RESUMEN

The swift growth of cities worldwide poses significant challenges in ensuring a sufficient water, energy, and food supply. The Nexus has innovated valuable systems to address these challenges. However, a crucial issue is the potential for pollution resulting from these systems, which directly and indirectly impacts public health and the overall quality of urban living. This study comprehensively reviews the interconnected challenges of the water-energy-food (WEF) nexus and various forms of pollution in cities. The primary focus of this review article is to showcase the findings of WEF nexus studies regarding various pollutions across different geographical regions and spatial scales. It aims to examine the problems resulting from these pollutions, specifically their effects on human health and urban life. It also delves into the sources of pollution as identified in these studies. Furthermore, the article will highlight the proposed solutions from the research aimed at effectively mitigating pollution in each sector studied. This article is a systematic review which analyses research sources from the Scopus database. It extensively reviewed 2463 peer-reviewed published articles and focused explicitly on articles related to the WEF nexus that discussed pollution. Our study emphasizes, firstly, raising awareness about the crucial link between the WEF nexus, pollution, urban environments, and human health among policymakers and key stakeholders, including urban planners, industry partners and municipalities. This is to promote the development of policies that encourage sustainable practices and key stakeholders. Secondly, it evaluates WEF nexus and pollution research methods and findings, aiding in identifying research gaps technological innovation and potential, as well as enhancing decision-making. Lastly, it outlines future research challenges, providing a roadmap for researchers and policymakers to advance understanding in this domain and identify opportunities for resource efficiency and collaboration between different sectors.

9.
Chemosphere ; 362: 142792, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38971434

RESUMEN

Pesticide pollution has been posing a significant risk to human and ecosystems, and photocatalysis is widely applied for the degradation of pesticides. Machine learning (ML) emerges as a powerful method for modeling complex water treatment processes. For the first time, this study developed novel ML models that improved the estimation of the photocatalytic degradation of various pesticides using ZnO-based photocatalysts. The input parameters encompassed the source of light, mass proportion of dopants to Zn, initial pesticide concentration (C0), pH of the solution, catalyst dosage and irradiation time. Additionally, physicochemical properties such as the molecular weight of the dopants and pesticides, as well as the water solubility of both dopants and pesticides, were considered. Notably, the numerical data were extracted from the literature via relevant tables (directly) or graphs (indirectly) using the web-based tool WebPlotDigitizer. Four ML models including multi-layer perceptron artificial neural network (MLP-ANN), particle swarm optimization-adaptive neuro fuzzy inference system (PSO-ANFIS), radial basis function (RBF), and coupled simulated annealing-least squares support vector machine (CSA-LSSVM) were developed. In comparison, RBF showed the best accuracy of modeling among all models, with the highest determination coefficient (R2) of 0.978 and average absolute relative deviation (AARD) of 4.80%. RBF model was effective in estimating the photocatalytic degradation of pesticides except for 2-chlorophenol, triclopyr and lambda-cyhalothrin, where CSA-LSSVM model demonstrated superior performance. Dichlorvos was completely degraded by ZnO photocatalyst under visible light. The sensitivity analysis by relevancy factor exhibited that light irradiation time and initial pesticide concentration were the most important parameters influencing photocatalytic degradation of pesticides positively and negatively, respectively. The new ML models provide a powerful tool for predicting pesticide degradation in wastewater treatment, which will reduce photochemical experiments and promote sustainable development.


Asunto(s)
Aprendizaje Automático , Plaguicidas , Fotólisis , Contaminantes Químicos del Agua , Óxido de Zinc , Óxido de Zinc/química , Plaguicidas/química , Plaguicidas/análisis , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Catálisis , Redes Neurales de la Computación , Purificación del Agua/métodos
10.
Chemosphere ; 365: 143371, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39306105

RESUMEN

Perfluorooctanoic acid is an emerging pollutant with exceptional resistance to degradation and detrimental environmental and health impacts. Conventional physical and chemical processes for Perfluorooctanoic acid are either expensive or inefficient. This study developed an environmentally sustainable and cost-effective gravity-driven kappa-carrageenan (kC)-based hydrogel for perfluorooctanoic acid (PFOA) removal from synthetic and actual wastewater. Two kC filters were prepared by mixing activated carbon (AC) or vanillin (V) with the kC hydrogel to optimize the hydrogel selectivity and water permeability. Experimental work revealed that the PFOA rejection and water permeability increased with the AC and V concentrations in the kC hydrogel. Experiments also evaluated the impact of feed pH, PFOA concentration, hydrogel composition, and hydrogel thickness on its performance. Due to pore size shrinkage, the AC-kC and V-kC hydrogels achieved the highest PFOA rejection at pH 4, whereas the water flux decreased. Increasing the PFOA concentration reduced water flux and increased PFOA rejection. For 2 cm hydrogel thickness, the water flux of 3%kC-0.3%AC and 3%kC-3%V hydrogels was 25.6 LMH and 21.5 LMH, and the corresponding PFOA rejection was 86.9% for 3%kC-0.3%AC and 85.7% for 3%kC-3%V. Finally, the kC-0.3%AC hydrogel removed 81.1% of PFOA from wastewater of 179 mg/L initial concentration compared to 79.3% for the kC-3%V hydrogel. After three filtration cycles, the water flux decline of 3%kC-0.3%AC was less than 10%. The gravity dead-end kC hydrogel provides sustainable PFOA wastewater treatment with biodegradable and natural materials.


Asunto(s)
Caprilatos , Carragenina , Fluorocarburos , Hidrogeles , Aguas Residuales , Contaminantes Químicos del Agua , Caprilatos/química , Caprilatos/análisis , Aguas Residuales/química , Hidrogeles/química , Carragenina/química , Fluorocarburos/química , Fluorocarburos/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Contaminantes del Suelo/análisis , Contaminantes del Suelo/química , Restauración y Remediación Ambiental/métodos , Eliminación de Residuos Líquidos/métodos , Suelo/química , Purificación del Agua/métodos
11.
Sci Total Environ ; 930: 172516, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38636874

RESUMEN

The electrokinetic process has been proposed for in-situ soil remediation to minimize excavation work and exposure to hazardous materials. The precipitation of heavy metals in alkaline pH near the cathode is still challenging. Reactive filter media and enhancement agents have been used in electrokinetics to enhance the removal of heavy metals. This study investigated coupling industrial iron slag waste and iron slag-activated carbon reactive filter media with electrokinetic for a single and mixture of heavy metals treatment. Instead of using acid enhancement agents, the anolyte solution was recycled to neutralize the alkaline front at the cathode, reducing the operation cost and chemical use. Experiments were conducted for 2 and 3 weeks at 20 mA electric current. Copper removal increased from 3.11 % to 23 % when iron slag reactive filter media was coupled with electrokinetic. Copper removal increased to 70.14 % in the electrokinetic experiment with iron slag-activated carbon reactive filter media. The copper removal increased to 89.21 % when the anolyte solution was recycled to the cathode compartment. Copper removal reached 93.45 % when the reactive filter media-electrokinetic process with anolyte recirculation was extended to 3 weeks. The reactive filter media- an electrokinetic process with anolyte recycling was evaluated for removing copper, nickel, and zinc mixture, and results revealed 81.1 % copper removal, 89.04 % nickel removal, and 92.31 % zinc removal in a 3-week experiment. The greater nickel and zinc removal is attributed to their higher solubility than copper. The results demonstrated the cost-effectiveness and efficiency of the electrokinetic with iron slag-activated carbon reactive filter media with anolyte recirculation for soil remediation from heavy metals.

12.
Nanoscale ; 16(28): 13331-13372, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38967017

RESUMEN

Iron oxide magnetic nanoparticles (MNPs) are crucial in various areas due to their unique magnetic properties. However, their practical use is often limited by instability and aggregation in aqueous solutions. This review explores the advanced technique of dendrimer functionalization to enhance MNP stability and expand their application potential. Dendrimers, with their symmetric and highly branched structure, effectively stabilize MNPs and provide tailored functional sites for specific applications. We summarize key synthetic modifications, focusing on the impacts of dendrimer size, surface chemistry, and the balance of chemical (e.g., coordination, anchoring) and physical (e.g., electrostatic, hydrophobic) interactions on nanocomposite properties. Current challenges such as dendrimer toxicity, control over dendrimer distribution on MNPs, and the need for biocompatibility are discussed, alongside potential solutions involving advanced characterization techniques. This review highlights significant opportunities in environmental, biomedical, and water treatment applications, stressing the necessity for ongoing research to fully leverage dendrimer-functionalized MNPs. Insights offered here aim to guide further development and application of these promising nanocomposites.

13.
J Contam Hydrol ; 267: 104425, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39244813

RESUMEN

This study applied electrokinetic (EK) in situ soil remediation for perfluorooctanoic acid (PFOA) removal from kaolinite soil. The kaolinite soil was spiked with 10 mg/kg PFOA for the EK treatment using Sodium Cholate bio-surfactant coupled with Activated Carbon (AC) or iron-coated Activated Carbon (FeAC) permeable reactive barrier (PRB). The study also evaluated the impact of AC and FeAC PRBs' position on the EK process performance. In the EK with the PRB in the middle section, PFOA removal from kaolinite was 52.35 % in the AC-EK tests and 59.55 % in the FeAC-EK. Experimental results showed the accumulation of PFOA near the cathode region in FeAC PRB tests, hypothesising that Fe from the PRB formed a complex with PFOA ions and transported it to the cathode region. Spent PRBs were regenerated with methanol for PFOA extraction and reuse in the EK experiments. Although FeAC PRB achieved better PFOA removal than AC PRB, the EK tests with regenerated AC-EK and FeAC-EK PRBs achieved 40.37 % and 20.62 % PFOA removal. For EK with FeAC PRB near the anode, PFOA removal was 21.96 %. Overall, using PRB in conjunction with the EK process can further enhance the removal efficiency. This concept could be applied to enhance the removal of various PFAS compounds from contaminated soils by combining a suitable PRB with the EK process. It also emphasizes the feasibility of in-situ soil remediation technologies for forever chemical treatment.

14.
RSC Adv ; 13(34): 24162-24173, 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37577104

RESUMEN

The presented study aims to explore the potential sources of common bio-wastes that could be successfully processed without any leftovers into materials for energy conversion and storage devices. We used chicken eggshells as an environmentally friendly precursor for electrode fillers in electrochemical capacitors (calcinated OS600 and OS900) and anode materials in Li-ion batteries (carbonized EM600 and EM900). Both groups of materials were obtained at two different temperatures to investigate the influence of their composition and properties on the electrochemical performance. Electrochemical capacitors with OS600 and OS900 substituted for 10 wt% of commercial activated carbon supplied similar capacitances, with OS600 stabilizing the long-term performance of the device. Also, both obtained anode materials are suitable for operation in Li-ion batteries, supplying a capacity of around 280 mA h g-1. Notably, EM900 is characterized by a well-developed structure, and as an anode, it exhibited better capacity retention of over 84%.

15.
Membranes (Basel) ; 13(5)2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37233544

RESUMEN

This study addressed the fouling issue in membrane distillation (M.D.) technology, a promising method for water purification and wastewater reclamation. To enhance the anti-fouling properties of the M.D. membrane, a tin sulfide (TS) coating onto polytetrafluoroethylene (PTFE) was proposed and evaluated with air gap membrane distillation (AGMD) using landfill leachate wastewater at high recovery rates (80% and 90%). The presence of TS on the membrane surface was confirmed using various techniques, such as Field Emission Scanning Electron Microscopy (FE-SEM), Fourier Transform Infrared Spectroscopy (FT-IR), Energy Dispersive Spectroscopy (EDS), contact angle measurement, and porosity analysis. The results indicated the TS-PTFE membrane exhibited better anti-fouling properties than the pristine PTFE membrane, and its fouling factors (FFs) were 10.4-13.1% compared to 14.4-16.5% for the PTFE membrane. The fouling was attributed to pore blockage and cake formation of carbonous and nitrogenous compounds. The study also found that physical cleaning with deionized (DI) water effectively restored the water flux, with more than 97% recovered for the TS-PTFE membrane. Additionally, the TS-PTFE membrane showed better water flux and product quality at 55 °C and excellent stability in maintaining the contact angle over time compared to the PTFE membrane.

16.
J Hazard Mater ; 460: 132360, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37657326

RESUMEN

The efficacy of the Standalone Electrokinetic (EK) process in soil PFAS removal is negligible, primarily due to the intersecting mechanisms of electromigration and electroosmosis transportation. Consequently, the redistribution of PFAS across the soil matrix occurs, hampering effective remediation efforts. Permeable reactive barrier (PRB) has been used to capture contaminants and extract them at the end of the EK process. This study conducted laboratory-scale tests to evaluate the feasibility of the iron slag PRB enhanced-EK process in conjunction with Sodium Cholate (NaC) biosurfactant as a cost-effective and sustainable method for removing PFOA from the soil. A 2 cm iron slag-based PRB with a pH of 9.5, obtained from the steel-making industry, was strategically embedded in the middle of the EK reactors to capture PFOA within the soil. The main component of the slag, iron oxide, exhibited significant adsorption capacity for PFOA contamination. The laboratory-scale tests were conducted over two weeks, revealing a PFOA removal rate of more than 79% in the slag/activated carbon PRB-EK test with NaC enhancement and 70% PFOA removal in the slag/activated carbon PRB-EK without NaC. By extending the duration of the slag/AC PRB-EK test with NaC enhancement to three weeks, the PFOA removal rate increased to 94.09%, with the slag/AC PRB capturing over 87% of the initial PFOA concentration of 10 mg/L. The specific energy required for soil decontamination by the EK process was determined to be 0.15 kWh/kg. The outcomes of this study confirm the feasibility of utilizing iron slag waste in the EK process to capture PFOA contaminants, offering a sustainable approach to soil decontamination. Combining iron slag PRB and NaC biosurfactant provides a cost-effective and environmentally friendly method for efficient PFOA removal from soil.

17.
Chemosphere ; 311(Pt 1): 136933, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36280122

RESUMEN

The removal of poly- and perfluoroalkyl substances (PFAS) from the aquatic environment is a universal concern due to the adverse effects of these substances on both the environment and public health. Different adsorbents, including carbon-based materials, ion exchange resins, biomaterials, and polymers, have been used for the removal of short-chain (C < 6) and long-chain (C > 7) PFAS from water with varying performance. Metal-organic frameworks (MOFs), as a new generation of adsorbents, have also been recently used to remove PFAS from water. MOFs provide unique properties such as significantly enhanced surface area, structural tunability, and improved selectivity compared to conventional adsorbents. However, due to various types of MOFs, their complex chemistry and morphology, different PFAS compounds, lack of standard adsorption test, and different testing conditions, there are inconclusive and contradictory findings in the literature. Therefore, this review aims to provide critical analysis of the performance of different types of MOFs in the removal of long-chain (C > 7), short-chain (C < 6), and ultra-short-chain (C < 3) PFAS and comprehensively study the efficiency of MOFs for PFAS removal in comparison with other adsorbents. In addition, the adsorption mechanisms and kinetics of PFAS components on different MOFs, including Materials of Institute Lavoisier (MIL), Universiteit of Oslo (UiO), Zeolitic imidazolate frameworks (ZIFs), Hong Kong University of Science and Technology (HKUST), and other hybrid types of MOF were discussed. The study also discussed the effect of environmental factors such as pH and ionic strength on the adsorption of PFAS on MOFs. In addition to the adsorption process, the reusability and regeneration of MOFs in the PFAS removal process are discussed. Finally, challenges and future outlooks of the utility of MOFs for PFAS removal were discussed to inspire future critical research efforts in removing PFAS.


Asunto(s)
Fluorocarburos , Estructuras Metalorgánicas , Adsorción , Resinas de Intercambio Iónico , Polímeros , Carbono , Agua
18.
Sci Total Environ ; 886: 163901, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37146807

RESUMEN

Forward osmosis (FO) has become a promising membrane technology for desalination and water treatment due to its simplicity, low energy consumption, and low fouling tendency compared to pressure-driven membrane processes. Therefore, the advancement in FO process modelling was one of the main objectives of this paper. On the other hand, the membrane characteristics and draw solute type represent the main FO process factors determining its technical performance and economical perspectives. Thus, this review mainly highlights the commercially available FO membrane characteristics and the development of lab-scale fabricated membranes based on cellulose triacetate and thin-film nanocomposite membranes. These membranes were discussed by considering their fabrication and modification techniques. Additionally, the novelty of different draw agents and their effects on FO performance have been analyzed in this study. Moreover, the review touched upon different pilot-scale studies on the FO process. Finally, this paper has stated the overall FO process advances along with its drawbacks. This review is anticipated to benefit the research and desalination scientific community by having an overview of the major FO components that require additional attention and development.


Asunto(s)
Membranas Artificiales , Purificación del Agua , Ósmosis , Purificación del Agua/métodos , Soluciones
19.
Bioresour Technol ; 343: 126111, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34648964

RESUMEN

Dark fermentation process for simultaneous wastewater treatment and H2 production is gaining attention. This study aimed to use machine learning (ML) procedures to model and analyze H2 production from wastewater during dark fermentation. Different ML procedures were assessed based on the mean squared error (MSE) and determination coefficient (R2) to select the most robust models for modeling the process. The research showed that gradient boosting machine (GBM), support vector machine (SVM), random forest (RF) and AdaBoost were the most appropriate models, which were optimized by grid search and deeply analyzed by permutation variable importance (PVI) to identify the relative importance of process variables. All four models demonstrated promising performances in predicting H2 production with high R2 values (0.893, 0.885, 0.902 and 0.889) and small MSE values (0.015, 0.015, 0.016 and 0.015). Moreover, RF-PVI demonstrated that acetate, butyrate, acetate/butyrate, ethanol, Fe and Ni were of high importance in decreasing order.


Asunto(s)
Aguas Residuales , Purificación del Agua , Fermentación , Hidrógeno/análisis , Aprendizaje Automático
20.
Membranes (Basel) ; 12(11)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36363652

RESUMEN

Forward osmosis (FO) has been identified as an emerging technology for the concentration and crystallization of aqueous solutions at low temperatures. However, the application of the FO process has been limited due to the unavailability of a suitable draw solute. An ideal draw solute should be able to generate high osmotic pressure and must be easily regenerated with less reverse solute flux (RSF). Recently, hydrogels have attracted attention as a draw solution due to their high capacity to absorb water and low RSF. This study explores a poly (vinyl alcohol)/poly (diallyldimethylammonium chloride) (PVA-polyDADMAC) polymeric network hydrogel as a draw solute in forward osmosis. A low-pressure reverse osmosis (RO) membrane was used in the FO process to study the performance of the hydrogel prepared in this study as a draw solution. The robust and straightforward gel synthesis method provides an extensive-scale application. The results indicate that incorporating cationic polyelectrolyte poly (diallyldimethylammonium chloride) into the polymeric network increases swelling capacity and osmotic pressure, thereby resulting in an average water flux of the PVA-polyDADMAC hydrogel (0.97 L m−2 h−1) that was 7.47 times higher than the PVA hydrogel during a 6 h FO process against a 5000 mg L−1 NaCl solution (as a feed solution). The effect of polymer and cross-linker composition on swelling capacity was studied to optimize the synthesized hydrogel composition. At 50 °C, the hydrogel releases nearly >70% of the water absorbed during the FO process at room temperatures, and water flux can be recovered by up to 86.6% of the initial flux after 12 hydrogel (draw solute) regenerations. Furthermore, this study suggests that incorporating cationic polyelectrolytes into the polymeric network enhances FO performances and lowers the actual energy requirements for (draw solute) regeneration. This study represents a significant step toward the commercial implementation of a hydrogel-driven FO system for the concentration of liquid-food extract.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA