Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Molecules ; 29(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38675544

RESUMEN

Scientific and industrial reasons dictate the study of the solid state of imepitoin, a highly safe and tolerable anticonvulsant drug used in the therapy of epileptic dogs that was approved in the Europe Union in 2013. Our investigations allowed us to discover the existence of a new polymorph of imepitoin, which finds itself in a monotropic relationship with the crystalline form (polymorph I) already known and present on the market. This form (polymorph II), obtained by crystallization from xylene, remains metastable under ambient conditions for at least 1 year. Both solid forms were characterized by thermal (DSC and TGA), spectroscopic (FT-IR and Raman), microscopic (SEM and HSM), and diffractometric techniques. The thermodynamic relationship between the two polymorphs (monotropic) is such that it is not possible to study the melting of polymorph II, not even by adopting appropriate experimental strategies. Our measurements highlighted that the melting peak of imepitoin actually also includes an onset of melt decomposition. The ab initio structure solution, obtained from synchrotron X-ray powder diffraction data collected at room temperature, allowed us to determine the crystal structure of the new polymorph (II). It crystallizes in the monoclinic crystal structure, P21/c space group (#14), with a = 14.8687(6) Å, b = 7.2434(2) Å, c = 12.5592(4) Å, ß = 107.5586(8)°, V = 1289.61(8) Å3, and Z = 4.

2.
Molecules ; 27(9)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35566200

RESUMEN

In this work it is demonstrated that enantiomerically enriched N-alkyl 2-oxazolinylazetidines undergo exclusive α-lithiation, and that the resulting lithiated intermediate is chemically stable but configurationally labile under the given experimental conditions that afford enantioenriched N-alkyl-2,2-disubstituted azetidines. Although this study reveals the configurational instability of the diastereomeric lithiated azetidines, it points out an interesting stereoconvergence of such lithiated intermediates towards the thermodynamically stable species, making the overall process highly stereoselective (er > 95:5, dr > 85:15) after trapping with electrophiles. This peculiar behavior has been rationalized by considering the dynamics at the azetidine nitrogen atom, the inversion at the C-Li center supported by in situ FT-IR experiments, and DFT calculations that suggested the presence of η3-coordinated species for diastereomeric lithiated azetidines. The described situation contrasted with the demonstrated stability of the smaller lithiated aziridine analogue. The capability of oxazolinylazetidines to undergo different reaction patterns with organolithium bases supports the model termed "dynamic control of reactivity" of relevance in organolithium chemistry. It has been demonstrated that only 2,2-substituted oxazolinylazetidines with suitable stereochemical requirements could undergo C=N addition of organolithiums in non-coordinating solvents, leading to useful precursors of chiral (er > 95:5) ketoazetidines.


Asunto(s)
Azetidinas , Litio , Nitrógeno , Espectroscopía Infrarroja por Transformada de Fourier , Estereoisomerismo
3.
Inorg Chem ; 60(9): 6349-6366, 2021 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-33856202

RESUMEN

Anionic complexes having vapochromic behavior are investigated: [K(H2O)][M(ppy)(CN)2], [K(H2O)][M(bzq)(CN)2], and [Li(H2O)n][Pt(bzq)(CN)2], where ppy = 2-phenylpyridinate, bzq = 7,8-benzoquinolate, and M = Pt(II) or Pd(II). These hydrated potassium/lithium salts exhibit a change in color upon being heated to 380 K, and they transform back into the original color upon absorption of water molecules from the environment. The challenging characterization of their structure in the vapochromic transition has been carried out by combining several experimental techniques, despite the availability of partially ordered and/or impure crystalline material. Room-temperature single-crystal and powder X-ray diffraction investigation revealed that [K(H2O)][Pt(ppy)(CN)2] crystallizes in the Pbca space group and is isostructural to [K(H2O)][Pd(ppy)(CN)2]. Variable-temperature powder X-ray diffraction allowed the color transition to be related to changes in the diffraction pattern and the decrease in sample crystallinity. Water loss, monitored by thermogravimetric analysis, occurs in two stages, well separated for potassium Pt compounds and strongly overlapped for potassium Pd compounds. The local structure of potassium compounds was monitored by in situ pair distribution function (PDF) measurements, which highlighted changes in the intermolecular distances due to a rearrangement of the crystal packing upon vapochromic transition. A reaction coordinate describing the structural changes was extracted for each compound by multivariate analysis applied to PDF data. It contributed to the study of the kinetics of the structural changes related to the vapochromic transition, revealing its dependence on the transition metal ion. Instead, the ligand influences the critical temperature, higher for ppy than for bzq, and the inclination of the molecular planes with respect to the unit cell planes, higher for bzq than for ppy. The first stage of water loss triggers a unit cell contraction, determined by the increase in the b axis length and the decrease in the a (for ppy) or c (for bzq) axis lengths. Consequent interplane distance variations and in-plane roto-translations weaken the π-stacking of the room-temperature structure and modify the distances and angles of Pt(II)/Pd(II) chains. The curve describing the intermolecular Pt(II)/Pd(II) distances as a function of temperature, validated by X-ray absorption spectroscopy, was found to reproduce the coordinate reaction determined by the model-free analysis.

4.
Inorg Chem ; 60(12): 8475-8488, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34060812

RESUMEN

Pure and Co3+-doped BaAl2O4 [Ba(Al1-xCox)2O4, x = 0, 0.0077, 0.0379] powder samples were prepared by a facile hydrothermal route. Elemental analyses by static secondary ion mass spectrometry (SIMS), X-ray absorption spectroscopy (XAS) measurements at the Co K-edge, and X-ray diffraction studies were fully correlated, thus addressing a complete description of the structural complexity of Co3+-doped BaAl2O4 powder. Powder X-ray diffraction (PXRD) patterns indicated that prepared samples were nanocrystalline with a hexagonal P63 symmetry. The X-ray absorption near-edge structure (XANES) measurements revealed the presence of cobalt in a +3 oxidation state, while the rarely documented, tetrahedral symmetry around Co3+ was extracted from the extended X-ray absorption fine structure (EXAFS) oscillation patterns. Rietveld structure refinements showed that Co3+ preferentially substitutes Al3+ at tetrahedral Al3 sites of the BaAl2O4 host lattice, whereas the (Al3)O4 tetrahedra remain rather regular with Co3+-O distances ranging from 1.73(9) to 1.74(9) Å. The underlying magneto-structural features were unraveled through axial and rhombic zero-field splitting (ZFS) terms. The increased substitution of Al3+ by Co3+ at Al3 sites leads to an increase of the axial ZFS terms in Co3+-doped BaAl2O4 powder from 10.8 to 26.3 K, whereas the rhombic ZFS parameters across the series change in the range from 2.7 to 10.4 K, showing a considerable increase of anisotropy together with the values of the anisotropic g-tensor components flowing from 1.7 to 2.5. We defined the line between the Co3+ doping limit and influenced magneto-structural characteristics, thus enabling the design of strategy to control the ZFS terms' contributions to magnetic anisotropy within Co3+-doped BaAl2O4 powder.

5.
Chemistry ; 26(40): 8742-8748, 2020 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-32181938

RESUMEN

We report the first transition metal catalyst- and ligand-free conjugate addition of lithium tetraorganozincates (R4 ZnLi2 ) to nitroolefins. Displaying enhanced nucleophilicity combined with unique chemoselectivity and functional group tolerance, homoleptic aliphatic and aromatic R4 ZnLi2 provide access to valuable nitroalkanes in up to 98 % yield under mild conditions (0 °C) and short reaction time (30 min). This is particularly remarkable when employing ß-nitroacrylates and ß-nitroenones, where despite the presence of other electrophilic groups, selective 1,4 addition to the C=C is preferred. Structural and spectroscopic studies confirmed the formation of tetraorganozincate species in solution, the nature of which has been a long debated issue, and allowed to unveil the key role played by donor additives on the aggregation and structure of these reagents. Thus, while chelating N,N,N',N'-tetramethylethylenediamine (TMEDA) and (R,R)-N,N,N',N'-tetramethyl-1,2-diaminocyclohexane (TMCDA) favour the formation of contacted-ion pair zincates, macrocyclic Lewis donor 12-crown-4 triggers an immediate disproportionation process of Et4 ZnLi2 into equimolar amounts of solvent-separated Et3 ZnLi and EtLi.

6.
Inorg Chem ; 59(10): 6876-6883, 2020 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-32330029

RESUMEN

A molecule-based ferroelectric triethylmethylammonium tetrachloroferrate(III) ([N(C2H5)3CH3][FeCl4]) powder was designed as a multifunctional material exhibiting excellent multiple bistability. Prepared by the slow evaporation method at room temperature, the compound crystallizes in the non-centrosymmetric assembly of hexagonal symmetry (P63mc space group) which undergoes a reversible temperature-triggered phase transition pinpointed at 363 K to the centrosymmetric packing within the P63/mmc space group. Aside from the inseparable role of the symmetry-breaking process smoothly unveiled from the X-ray powder diffraction data, a striking change in the dielectric permittivity observed during the paraelectric-to-ferroelectric phase transition directly discloses the bistable dielectric behavior-an exceptionally high increase in the dielectric permittivity of about 360% at 100 kHz across the heating and cooling cycles is direct proof showing the highly desirable stimuli-responsive electric ordering in this improper ferroelectric architecture. Due to the magnetically modulated physical properties resulting in the coupling of magnetic and electric orderings, the flexible assembly of [N(C2H5)3CH3][FeCl4] could be used to boost the design and development of novel magnetoelectric devices.

7.
Acta Crystallogr Sect E Struct Rep Online ; 70(Pt 11): o1149-50, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25484794

RESUMEN

The title compound, C24H25NO3·2CH3OH, which crystallized as a methanol disolvate, has applications as a PET radiotracer in the early diagnosis of Alzheimer's disease. The dihedral angle between the biphenyl rings is 8.2 (2)° and the heterocyclic ring adopts a half-chair conformation with the N atom adopting a pyramidal geometry (bond-angle sum = 327.6°). The C atoms of both meth-oxy groups lie close to the plane of their attached ring [deviations = 0.107 (6) and 0.031 (6) Å]. In the crystal, the components are linked by O-H⋯O and O-H⋯N hydrogen bonds, generating [010] chains. C-H⋯O inter-actions are also observed.

8.
Eur J Med Chem ; 266: 116135, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38219659

RESUMEN

Cyclooxygenase enzymes have distinct roles in cardiovascular, neurological, and neurodegenerative disease. They are differently expressed in different type of cancers. Specific and selective COXs inhibitors are needed to be used alone or in combo-therapies. Fully understand the differences at the catalytic site of the two cyclooxygenase (COX) isoforms is still opened to investigation. Thus, two series of novel compounds were designed and synthesized in fair to good yields using the highly selective COX-1 inhibitor mofezolac as the lead compound to explore a COX-1 zone formed by the polar residues Q192, S353, H90 and Y355, as well as hydrophobic amino acids I523, F518 and L352. According to the structure of the COX-1:mofezolac complex, hydrophobic amino acids appear to have free volume eventually accessible to the more sterically hindering groups than the methoxy linked to the phenyl groups of mofezolac, in particular the methoxyphenyl at C4-mofezolac isoxazole. Mofezolac bears two methoxyphenyl groups linked to C3 and C4 of the isoxazole core ring. Thus, in the novel compounds, one or both methoxy groups were replaced by the higher homologous ethoxy, normal and isopropyl, normal and tertiary butyl, and phenyl and benzyl. Furthermore, a major difference between the two sets of compounds is the presence of either a methyl or acetic moiety at the C5 of the isoxazole. Among the C5-methyl series, 12 (direct precursor of mofezolac) (COX-1 IC50 = 0.076 µM and COX-2 IC50 = 0.35 µM) and 15a (ethoxy replacing the two methoxy groups in 12; COX-1 IC50 = 0.23 µM and COX-2 IC50 > 50 µM) were still active and with a Selectivity Index (SI = COX-2 IC50/COX-1 IC50) = 5 and 217, respectively. The other symmetrically substituted alkoxyphenyl moietis were inactive at 50 µM final concentration. Among the asymmetrically substituted, only the 16a (methoxyphenyl on C3-isoxazole and ethoxyphenyl on C4-isoxazole) and 16b (methoxyphenyl on C3-isoxazole and n-propoxyphenyl on C4-isoxazole) were active with SI = 1087 and 38, respectively. Among the set of compounds with the acetic moiety, structurally more similar to mofezolac (SI = 6329), SI ranged between 1.4 and 943. It is noteworthy that 17b (n-propoxyphenyl on both C3- and C4-isoxazole) were found to be a COX-2 slightly selective inhibitor with SI = 0.072 (COX-1 IC50 > 50 µM and COX-2 IC50 = 3.6 µM). Platelet aggregation induced by arachidonic acid (AA) can be in vitro suppressed by the synthesized compounds, without affecting of the secondary hemostasia, confirming the biological effect provided by the selective inhibition of COX-1. A positive profile of hemocompatibility in relation to erythrocyte and platelet toxicity was observed. Additionally, these compounds exhibited a positive profile of hemocompatibility and reduced cytotoxicity. Quantitative structure activity relationship (QSAR) models and molecular modelling (Ligand and Structure based virtual screening procedures) provide key information on the physicochemical and pharmacokinetic properties of the COX-1 inhibitors as well as new insights into the mechanisms of inhibition that will be used to guide the development of more effective and selective compounds. X-ray analysis was used to confirm the chemical structure of 14 (MSA17).


Asunto(s)
Enfermedades Neurodegenerativas , Humanos , Estructura Molecular , Ciclooxigenasa 2/metabolismo , Dominio Catalítico , Relación Estructura-Actividad , Ciclooxigenasa 1/metabolismo , Isoxazoles/química , Antiinflamatorios no Esteroideos/farmacología , Inhibidores de la Ciclooxigenasa 2/farmacología , Inhibidores de la Ciclooxigenasa 2/química , Aminoácidos
9.
Dalton Trans ; 53(5): 2082-2097, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38180044

RESUMEN

CeNiO3 has been reported in the literature in the last few years as a novel LnNiO3 compound with promising applications in different catalytic fields, but its structure has not been correctly reported so far. In this research, CeNiO3 (RB1), CeO2 and NiO have been synthesized in a nanocrystalline form using a modified citrate aqueous sol-gel route. A direct comparison between the equimolar physical mixture (n(CeO2) : n(NiO) = 1 : 1) and compound RB1 was made. Their structural differences were investigated by laboratory powder X-ray diffraction (PXRD), selected area electron diffraction (SAED), transmission electron microscopy (TEM) with an energy-dispersive X-ray spectroscopy (EDS) detector, and Raman spectroscopy. The surface of the compounds was analyzed by X-ray photoelectron spectroscopy (XPS), while the thermal behaviour was explored by thermogravimetric analysis (TGA). Their magnetic properties were also investigated with the aim of exploring the differences between these two compounds. There were clear differences between the physical mixture of CeO2 + NiO and RB1 presented by all of these employed methods. Synchrotron methods, such as atomic pair distribution function analysis (PDF), X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), were used to explore the structure of RB1 in more detail. Three different models for the structural solution of RB1 were proposed. One structural solution proposes that RB1 is a single-phase pyrochlore compound (Ce2Ni2O7) while the other two solutions suggest that RB1 is a two-phase system of either CeO2 + NiO or Ce1-xNixO2 and NiO.

10.
Cryst Growth Des ; 23(8): 6034-6045, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37547879

RESUMEN

Quercetin, a naturally occurring bioflavonoid substance widely used in the nutraceutical and food industries, exists in various solid forms that can have different physicochemical properties, thus impacting this compound's performance in various applications. In this work, we will clarify the complex solid-form landscape of this molecule. Two elusive isostructural solvates of quercetin were obtained from ethanol and methanol. The obtained crystals were characterized experimentally, but the crystallographic structure could not be solved due to their high instability. Nevertheless, the desolvated structure resulting from a high-temperature treatment (or prolonged storage at ambient conditions) of both these two labile crystals was characterized and solved via powder X-ray diffraction and solid-state nuclear magnetic resonance (SSNMR). This anhydrous crystal structure was compared with another anhydrous quercetin form obtained in our previous work, indicating that, at least, two different anhydrous polymorphs of quercetin exist. Navigating the solid-form landscape of quercetin is essential to ensure accurate control of the functional properties of food, nutraceutical, or pharmaceutical products containing crystal forms of this substance.

11.
Materials (Basel) ; 16(13)2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37444835

RESUMEN

In the quest to find powerful modifiers of screen-printed electrodes for sensing applications, a set of rare earth-doped Ca10-xREx(PO4)6(OH)2 (RE = La, Nd, Sm, Eu, Dy, and Tm and x = 0.01, 0.02, 0.10, and 0.20) hydroxyapatite (HAp) samples were subjected to an in-depth electrochemical characterization using electrochemical impedance spectroscopy and cyclic and square wave voltammetry. Among all of these, the inorganic phosphates doped with lanthanum proved to be the most reliable, revealing robust analytical performances in terms of sensitivity, repeatability, reproducibility, and reusability, hence paving the way for their exploitation in sensing applications. Structural data on La-doped HAp samples were also provided by using different techniques, including optical microscopy, X-ray diffraction, Rietveld refinement from X-ray data, Fourier transform infrared, and Raman vibrational spectroscopies, to complement the electrochemical characterization.

12.
IUCrJ ; 9(Pt 4): 403-405, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35844474

RESUMEN

Commentary is given on a paper [Schlesinger et al. (2022). IUCrJ, 9, 406-424.] reporting on ambiguous structure determination from powder data using four different structural models of 4,11-difluoroquinacridone with similar X-ray powder patterns.

13.
Chemistry ; 17(1): 286-96, 2011 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-21207624

RESUMEN

A highly stereo- and regioselective functionalisation of chiral non-racemic aziridines is reported. By starting from a parent enantioenriched aziridine and finely tuning the reaction conditions, it is possible to address the regio- and stereoselectivity of the lithiation/electrophile trapping sequence, thereby allowing the preparation of highly enantioenriched functionalised aziridines. From chiral N-alkyl trans-2,3-diphenylaziridines (S,S)-1 a,b, two differently configured chiral aziridinyllithiums could be generated (trans-1 a,b-Li in toluene and cis-1 a,b-Li in THF), thus disclosing a solvent-dependent reactivity that is useful for the synthesis of chiral tri-substituted aziridines with different stereochemistry. In contrast, chiral aziridine (S,S)-1 c showed a temperature-dependent reactivity to give chiral ortho-lithiated aziridine 1 c-ortho-Li at -78 °C and α-lithiated aziridine 1 c-α-Li at 0 °C. Both lithiated intermediates react with electrophiles to give enantioenriched ortho- and α-functionalised aziridines. The reaction of all the lithiated aziridines with carbonyl compounds furnished useful chiral hydroxyalkylated derivatives, the stereochemistry of which was ascertained by X-ray and NMR spectroscopic analysis. The usefulness of chiral non-racemic functionalised aziridines has been demonstrated by reductive ring-opening reactions furnishing chiral amines that bear quaternary stereogenic centres and chiral 1,2-, 1,3- and 1,5-aminoalcohols. It is remarkable that the solvent-dependent reactivity observed with (S,S)-1 a,b permits the preparation of both the enantiomers of amines (11 and ent-11) and 1,2-aminoalcohols (13 and ent-13) starting from the same parent aziridine. Interestingly, for the first time, a configurationally stable chiral α-lithiated aziridine (1 c-α-Li) has been generated at 0 °C. In addition, ortho-hydroxyalkylated aziridines have been easily converted into chiral aminoalkyl phthalans, which are useful building blocks in medicinal chemistry.


Asunto(s)
Aminas/síntesis química , Amino Alcoholes/síntesis química , Aziridinas/química , Aminas/química , Amino Alcoholes/química , Litio/química , Estructura Molecular , Oxidación-Reducción , Solventes , Estereoisomerismo
14.
ChemMedChem ; 16(13): 2121-2129, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-33831272

RESUMEN

Despite the increasing incidence of hepatocellular carcinoma (HCC) worldwide, current pharmacological treatments are still unsatisfactory. We have previously shown that lysophosphatidic acid receptor 6 (LPAR6) supports HCC growth and that 9-xanthenylacetic acid (XAA) acts as an LPAR6 antagonist inhibiting HCC growth without toxicity. Here, we synthesized four novel XAA derivatives, (±)-2-(9H-xanthen-9-yl)propanoic acid (compound 4 - MC9), (±)-2-(9H-xanthen-9-yl)butanoic acid (compound 5 - MC6), (±)-2-(9H-xanthen-9-yl)hexanoic acid (compound 7 - MC11), and (±)-2-(9H-xanthen-9-yl)octanoic acid (compound 8 - MC12, sodium salt) by introducing alkyl groups of increasing length at the acetic α-carbon atom. Two of these compounds were characterized by X-ray powder diffraction and quantum mechanical calculations, while molecular docking simulations suggested their enantioselectivity for LPAR6. Biological data showed anti-HCC activity for all XAA derivatives, with the maximum effect observed for MC11. Our findings support the view that increasing the length of the alkyl group improves the inhibitory action of XAA and that enantioselectivity can be exploited for designing novel and more effective XAA-based LPAR6 antagonists.


Asunto(s)
Ácido Acético/farmacología , Antineoplásicos/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Receptores del Ácido Lisofosfatídico/antagonistas & inhibidores , Xantenos/farmacología , Ácido Acético/síntesis química , Ácido Acético/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Estructura Molecular , Receptores del Ácido Lisofosfatídico/metabolismo , Relación Estructura-Actividad , Células Tumorales Cultivadas , Xantenos/síntesis química , Xantenos/química
15.
IUCrJ ; 8(Pt 1): 76-86, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33520244

RESUMEN

The six natural silicates known as asbestos may induce fatal lung diseases via inhalation, with a latency period of decades. The five amphibole asbestos species are assumed to be biopersistent in the lungs, and for this reason they are considered much more toxic than serpentine asbestos (chrysotile). Here, we refined the atomic structure of an amosite amphibole asbestos fibre that had remained in a human lung for ∼40 years, in order to verify the stability in vivo. The subject was originally exposed to a blend of chrysotile, amosite and crocidolite, which remained in his parietal pleura for ∼40 years. We found a few relicts of chrysotile fibres that were amorphous and magnesium depleted. Amphibole fibres that were recovered were undamaged and suitable for synchrotron X-ray micro-diffraction experiments. Our crystal structure refinement from a recovered amosite fibre demonstrates that the original atomic distribution in the crystal is intact and, consequently, that the atomic structure of amphibole asbestos fibres remains stable in the lungs for a lifetime; during which time they can cause chronic inflammation and other adverse effects that are responsible for carcinogenesis. The amosite fibres are not iron depleted proving that the iron pool for the formation of the asbestos bodies is biological (haemoglobin/plasma derived) and that it does not come from the asbestos fibres themselves.

16.
Dalton Trans ; 49(12): 3856-3868, 2020 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-31850463

RESUMEN

Three hydrated double layered vanadium oxides, namely Na0.35V2O5·0.8(H2O), K0.36(H3O)0.15V2O5 and (NH4)0.37V2O5·0.15(H2O), were obtained by using mild hydrothermal conditions. Their delta type structural frameworks were solved by high-resolution synchrotron X-ray powder diffraction and the interlayer spacings were interpreted from difference Fourier maps. The inter-slab distances are modulated by the water content and the special arrangements of the alkali and ammonium cations. The XPS measurements denote mixed valence systems with high contents of V4+ ions up to 40%. The monitoring of the V4+ EPR signal over time suggests a reduction of the electronic delocalization on account of the partial oxidation to V5+. The electrochemical performance of the active phases is strongly conditioned by the vacuum-drying process of the electrodes, showing better capacity retention when vacuum is not applied. In situ X-ray diffraction shows a structural mechanism of contraction/expansion of the bilayers upon lithium insertion/extraction where the alkali ions behave as structural stabilizers. Galvanostatic cycling at very low current density implies migration of the alkali "pillars" triggering the collapse of the structure.

17.
J Org Chem ; 74(16): 6319-22, 2009 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-19610596

RESUMEN

The lithiation reaction of o-tolylaziridine 1 has been investigated by using the aziridine ring capability to act as a directing metalation group. Trapped with electrophiles, the resulting o-aziridinyl benzyllithium 1-Li gives access to several functionalized aziridines 2a-j. The hydroxyalkylated derivatives 2d-j were converted into important scaffolds such as isochromans 3a-d. A stereoselective preparation of isochromans (R)-3b, (1R,3S)-3d, and (1R,3R)-3d has been developed starting from enantioenriched o-tolylaziridine.


Asunto(s)
Aziridinas/química , Cromanos/química , Cromanos/síntesis química , Litio/química , Alquilación , Estereoisomerismo
18.
Front Chem ; 7: 614, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31572708

RESUMEN

A new synthetic route to N-alkyl-2-acylazetidines was developed through a highly stereoselective addition of organolithiums to N-alkyl-2-oxazolinylazetidines followed by acidic hydrolysis of the resulting oxazolidine intermediates. This study revealed an unusual reactivity of the C=N bond of the oxazoline group when reacted with organolithiums in a non-polar solvent such as toluene. The observed reactivity has been explained considering the role of the nitrogen lone pair of the azetidine ring as well as of the oxazolinyl group in promoting a complexation of the organolithium, thus ending up with the addition to the C=N double bond. The high level of stereoselectivity in this addition is supported by DFT calculations and NMR investigations, and a model is proposed for the formation of the oxazolidine intermediates, that have been isolated and fully characterized. Upon acidic conditions, the oxazolidine moieties were readily converted into 2-acylazetidines. This synthetic approach has been applied for the preparation of highly enantioenriched 2-acylazetidines starting from chiral not racemic N-alkyl-2-oxazolinylazetidines.

19.
Sci Rep ; 9(1): 15158, 2019 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-31641185

RESUMEN

Inorganic materials that enable a link between the storage and release of molecular oxygen offer a fertile ground in continuous quest for the applications that can potentially reduce energy consumption and thus minimize adverse effects on the environment. Herein, we address reversible intake/release of an oxygen within the BaAl2O4 material as evidenced by unexpected magnetic ordering. Magnetic measurements unveil that an oxygen is stored in the form of condensed matter, creating a kind of low dimensional, chain-like assembly within the tunnels of BaAl2O4 structure. We demonstrate that oxygen is adsorbed simply by staying in air, at ambient conditions, and released relatively quickly by staying in the He or other gas atmosphere of several millibars pressure even at 300 K.

20.
Acta Crystallogr A ; 64(Pt 2): 326-36, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18285628

RESUMEN

Electron-density maps are calculated by Fourier syntheses with coefficients based on structure factors. Diffraction experiments provide intensities up to a limited resolution; as a consequence, the Fourier syntheses always show series-termination errors. The worse the resolution, the less accurate is the Fourier representation of the electron density. In general, each atomic peak is shifted from the correct position, shows a deformed (with respect to the true distribution of the electrons in the atomic domain) profile, and is surrounded by a series of negative and positive ripples of gradually decreasing amplitude. An algorithm is described which is able to reduce the resolution bias by relocating the peaks in more correct positions and by modifying the peak profile to better fit the real atomic electron densities. Some experimental tests are performed showing the usefulness of the procedure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA