Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987586

RESUMEN

Systemic lupus erythematosus (SLE) is prototypical autoimmune disease driven by pathological T cell-B cell interactions1,2. Expansion of T follicular helper (TFH) and T peripheral helper (TPH) cells, two T cell populations that provide help to B cells, is a prominent feature of SLE3,4. Human TFH and TPH cells characteristically produce high levels of the B cell chemoattractant CXCL13 (refs. 5,6), yet regulation of T cell CXCL13 production and the relationship between CXCL13+ T cells and other T cell states remains unclear. Here, we identify an imbalance in CD4+ T cell phenotypes in patients with SLE, with expansion of PD-1+/ICOS+ CXCL13+ T cells and reduction of CD96hi IL-22+ T cells. Using CRISPR screens, we identify the aryl hydrocarbon receptor (AHR) as a potent negative regulator of CXCL13 production by human CD4+ T cells. Transcriptomic, epigenetic and functional studies demonstrate that AHR coordinates with AP-1 family member JUN to prevent CXCL13+ TPH/TFH cell differentiation and promote an IL-22+ phenotype. Type I interferon, a pathogenic driver of SLE7, opposes AHR and JUN to promote T cell production of CXCL13. These results place CXCL13+ TPH/TFH cells on a polarization axis opposite from T helper 22 (TH22) cells and reveal AHR, JUN and interferon as key regulators of these divergent T cell states.

2.
Nat Methods ; 13(2): 151-7, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26689262

RESUMEN

Here we describe the development of a human lung 'small airway-on-a-chip' containing a differentiated, mucociliary bronchiolar epithelium and an underlying microvascular endothelium that experiences fluid flow, which allows for analysis of organ-level lung pathophysiology in vitro. Exposure of the epithelium to interleukin-13 (IL-13) reconstituted the goblet cell hyperplasia, cytokine hypersecretion and decreased ciliary function of asthmatics. Small airway chips lined with epithelial cells from individuals with chronic obstructive pulmonary disease recapitulated features of the disease such as selective cytokine hypersecretion, increased neutrophil recruitment and clinical exacerbation by exposure to viral and bacterial infections. With this robust in vitro method for modeling human lung inflammatory disorders, it is possible to detect synergistic effects of lung endothelium and epithelium on cytokine secretion, identify new biomarkers of disease exacerbation and measure responses to anti-inflammatory compounds that inhibit cytokine-induced recruitment of circulating neutrophils under flow.


Asunto(s)
Epitelio/efectos de los fármacos , Inflamación/metabolismo , Interleucina-13/farmacología , Dispositivos Laboratorio en un Chip , Enfermedades Pulmonares/tratamiento farmacológico , Enfermedades Pulmonares/metabolismo , Humanos , Inflamación/patología , Técnicas de Cultivo de Tejidos
3.
Sci Rep ; 13(1): 16357, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37773535

RESUMEN

Disruptions in the gut epithelial barrier can lead to the development of chronic indications such as inflammatory bowel disease (IBD). Historically, barrier function has been assessed in cancer cell lines, which do not contain all human intestinal cell types, leading to poor translatability. To bridge this gap, we adapted human primary gut organoids grown as monolayers to quantify transcription factor phosphorylation, gene expression, cytokine production, and barrier function. In this work we describe and characterize a novel 96-well human gut organoid-derived monolayer system that enables quantitative assessment of candidate therapeutics. Normal human intestine differentiation patterns and barrier function were characterized and confirmed to recapitulate key aspects of in vivo biology. Next, cellular response to TNF-α (a central driver of IBD) was determined using a diverse cadre of quantitative readouts. We showed that TNF-α pathway antagonists rescued damage caused by TNF-α in a dose-dependent manner, indicating that this system is suitable for quantitative assessment of barrier modulating factors. Taken together, we have established a robust primary cell-based 96-well system capable of interrogating questions around mucosal response. This system is well suited to provide pivotal functional data to support translational target and drug discovery efforts.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Factor de Necrosis Tumoral alfa , Humanos , Factor de Necrosis Tumoral alfa/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Mucosa Intestinal/metabolismo , Células Epiteliales/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Organoides/metabolismo
4.
Biomarkers ; 17(2): 172-9, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22299632

RESUMEN

Estrogen Receptor α (ERα) and Estrogen Receptor ß (ERß) are steroid nuclear receptors that transduce estrogen signaling to control diverse physiological processes linked to reproduction, bone remodeling, behavior, immune response and endocrine-related diseases. In order to differentiate between ERα and ERß mediated effects in vivo, ER subtype selective biomarkers are essential. We utilized ERα knockout (AERKO) and ERß knockout (BERKO) mouse liver RNA and genome wide profiling to identify novel ERα selective serum biomarker candidates. Results from the gene array experiments were validated using real-time RT-PCR and subsequent ELISA's to demonstrate changes in serum proteins. Here we present data that Lipopolysacharide Binding Protein (LBP) is a novel liver-derived ERα selective biomarker that can be measured in serum.


Asunto(s)
Biomarcadores/sangre , Proteínas Sanguíneas/análisis , Proteínas Portadoras/sangre , Receptor alfa de Estrógeno/genética , Receptor beta de Estrógeno/genética , Glicoproteínas de Membrana/sangre , ARN Mensajero/biosíntesis , Proteínas de Fase Aguda , Animales , Estradiol/administración & dosificación , Receptor alfa de Estrógeno/deficiencia , Receptor beta de Estrógeno/deficiencia , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/análisis , Ratas , Útero/efectos de los fármacos , Útero/metabolismo
5.
Arthritis Rheumatol ; 74(11): 1808-1821, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35644031

RESUMEN

OBJECTIVES: To investigate the immune cell profiles of patients with systemic lupus erythematosus (SLE), and to identify longitudinal changes in those profiles over time. METHODS: We employed mass cytometry with 3 different panels of 38-39 markers (an immunophenotyping panel, a T cell/monocyte panel, and a B cell panel) in cryopreserved peripheral blood mononuclear cells (PBMCs) from 9 patients with early SLE, 15 patients with established SLE, and 14 controls without autoimmune disease. We used machine learning-driven clustering, flow self-organizing maps, and dimensional reduction with t-distributed stochastic neighbor embedding to identify unique cell populations in early SLE and established SLE. We used mass cytometry data of PBMCs from 19 patients with early rheumatoid arthritis (RA) and 23 controls to compare levels of specific cell populations in early RA and SLE. For the 9 patients with early SLE, longitudinal mass cytometry analysis was applied to PBMCs at enrollment, 6 months after enrollment, and 1 year after enrollment. Serum samples were also assayed for 65 cytokines using Luminex multiplex assay, and associations between cell types and cytokines/chemokines were assessed. RESULTS: Levels of peripheral helper T cells, follicular helper T (Tfh) cells, and several Ki-67+ proliferating subsets (ICOS+Ki-67+ CD8 T cells, Ki-67+ regulatory T cells, CD19intermediate Ki-67high plasmablasts, and PU.1high Ki-67high monocytes) were increased in patients with early SLE, with more prominent alterations than were seen in patients with early RA. Longitudinal mass cytometry and multiplex serum cytokine assays of samples from patients with early SLE revealed that levels of Tfh cells and CXCL10 had decreased 1 year after enrollment. Levels of CXCL13 were positively correlated with levels of several of the expanded cell populations in early SLE. CONCLUSION: Two major helper T cell subsets and unique Ki-67+ proliferating immune cell subsets were expanded in patients in the early phase of SLE, and the immunologic features characteristic of early SLE evolved over time.


Asunto(s)
Leucocitos Mononucleares , Lupus Eritematoso Sistémico , Humanos , Leucocitos Mononucleares/metabolismo , Antígeno Ki-67 , Interleucinas , Citocinas
6.
J Pharmacol Exp Ther ; 338(1): 220-7, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21459965

RESUMEN

Both the physiological role of muscarinic receptors for bladder function and the therapeutic efficacy of antimuscarinic agents for overactive bladder syndrome are well documented. We investigated the effect of antimuscarinic agents with different subtype selectivity on urodynamic parameters in nonhuman primates and rodents and compared plasma levels of these agents between species. Anesthetized rhesus monkeys were transurethrally catheterized, and the bladder was infused with saline. Urodynamic parameters were measured before and after intravenous drug administration. Tolterodine (nonselective) and oxybutynin (moderately M(3)-selective) increased bladder capacity at lower doses than those required to decrease micturition pressure. However, higher doses of darifenacin (M(3)-selective) were needed to increase the bladder capacity than those needed to decrease the micturition pressure. In rats, tolterodine had no effect on the bladder capacity but decreased the micturition pressure at all of the doses administered. Oxybutynin also decreased micturition pressure and increased bladder capacity at the highest dose. Plasma levels of these drugs overlap in both species. These results suggest that, in addition to the M(3) receptor, other muscarinic receptor subtypes contribute to regulate bladder storage function in nonhuman primates, since less subtype-selective tolterodine and oxybutynin showed higher specificity to the bladder capacity effect than the effect on micturition pressure compared with M(3)-selective darifenacin. In addition, the role of muscarinic receptors in bladder storage function varies between primates and rodents. Compared with rodents, muscarinic receptors may play a more active role during the storage phase to regulate the functional bladder capacity in primates.


Asunto(s)
Antagonistas Muscarínicos/farmacología , Vejiga Urinaria/efectos de los fármacos , Vejiga Urinaria/fisiología , Animales , Compuestos de Bencidrilo/farmacología , Cresoles/farmacología , Femenino , Macaca mulatta , Ácidos Mandélicos/farmacología , Fenilpropanolamina/farmacología , Ratas , Ratas Sprague-Dawley , Especificidad de la Especie , Tartrato de Tolterodina
7.
BMC Musculoskelet Disord ; 12: 246, 2011 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-22035016

RESUMEN

BACKGROUND: Age-related sarcopenia is a disease state of loss of muscle mass and strength that affects physical function and mobility leading to falls, fractures, and disability. The need for therapies to treat age-related sarcopenia has attracted intensive preclinical research. To facilitate the discovery of these therapies, we have developed a non-invasive rat muscle functional assay system to efficiently measure muscle force and evaluate the efficacy of drug candidates. METHODS: The lower leg muscles of anesthetized rats are artificially stimulated with surface electrodes on the knee holders and the heel support, causing the lower leg muscles to push isometric pedals that are attached to force transducers. We developed a stimulation protocol to perform a fatigability test that reveals functional muscle parameters like maximal force, the rate of fatigue, fatigue-resistant force, as well as a fatigable muscle force index. The system is evaluated in a rat aging model and a rat glucocorticoid-induced muscle loss model RESULTS: The aged rats were generally weaker than adult rats and showed a greater reduction in their fatigable force when compared to their fatigue-resistant force. Glucocorticoid treated rats mostly lost fatigable force and fatigued at a higher rate, indicating reduced force from glycolytic fibers with reduced energy reserves. CONCLUSIONS: The involuntary contraction assay is a reliable system to assess muscle function in rodents and can be applied in preclinical research, including age-related sarcopenia and other myopathy.


Asunto(s)
Envejecimiento/fisiología , Contracción Isométrica/fisiología , Fatiga Muscular/fisiología , Sarcopenia/fisiopatología , Factores de Edad , Envejecimiento/efectos de los fármacos , Animales , Bioensayo , Dexametasona/farmacología , Modelos Animales de Enfermedad , Estimulación Eléctrica , Glucocorticoides/farmacología , Contracción Isométrica/efectos de los fármacos , Masculino , Fatiga Muscular/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
8.
Innate Immun ; 25(2): 132-143, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30774010

RESUMEN

Crohn's disease (CD) is a chronic disorder of the gastrointestinal tract characterized by inflammation and intestinal epithelial injury. Loss of function mutations in the intracellular bacterial sensor NOD2 are major risk factors for the development of CD. In the absence of robust bacterial recognition by NOD2 an inflammatory cascade is initiated through alternative PRRs leading to CD. In the present study, MCC950, a specific small molecule inhibitor of NLR pyrin domain-containing protein 3 (NLRP3), abrogated dextran sodium sulfate (DSS)-induced intestinal inflammation in Nod2-/- mice. NLRP3 inflammasome formation was observed at a higher rate in NOD2-deficient small intestinal lamina propria cells after insult by DSS. NLRP3 complex formation led to an increase in IL-1ß secretion in both the small intestine and colon of Nod2ko mice. This increase in IL-1ß secretion in the intestine was attenuated by MCC950 leading to decreased disease severity in Nod2ko mice. Our work suggests that NLRP3 inflammasome activation may be a key driver of intestinal inflammation in the absence of functional NOD2. NLRP3 pathway inhibition can prevent intestinal inflammation in the absence of robust NOD2 signaling.


Asunto(s)
Colitis/inmunología , Enfermedad de Crohn/inmunología , Microbioma Gastrointestinal/inmunología , Inflamasomas/metabolismo , Mucosa Intestinal/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína Adaptadora de Señalización NOD2/genética , Animales , Colitis/inducido químicamente , Sulfato de Dextran , Modelos Animales de Enfermedad , Furanos/administración & dosificación , Furanos/farmacología , Compuestos Heterocíclicos de 4 o más Anillos , Humanos , Indenos , Interleucina-1beta/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Transducción de Señal , Sulfonamidas/administración & dosificación , Sulfonamidas/farmacología , Sulfonas
9.
JCI Insight ; 4(20)2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31536480

RESUMEN

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by pathologic T cell-B cell interactions and autoantibody production. Defining the T cell populations that drive B cell responses in SLE may enable design of therapies that specifically target pathologic cell subsets. Here, we evaluated the phenotypes of CD4+ T cells in the circulation of 52 SLE patients drawn from multiple cohorts and identified a highly expanded PD-1hiCXCR5-CD4+ T cell population. Cytometric, transcriptomic, and functional assays demonstrated that PD-1hiCXCR5-CD4+ T cells from SLE patients are T peripheral helper (Tph) cells, a CXCR5- T cell population that stimulates B cell responses via IL-21. The frequency of Tph cells, but not T follicular helper (Tfh) cells, correlated with both clinical disease activity and the frequency of CD11c+ B cells in SLE patients. PD-1hiCD4+ T cells were found within lupus nephritis kidneys and correlated with B cell numbers in the kidney. Both IL-21 neutralization and CRISPR-mediated deletion of MAF abrogated the ability of Tph cells to induce memory B cell differentiation into plasmablasts in vitro. These findings identify Tph cells as a highly expanded T cell population in SLE and suggest a key role for Tph cells in stimulating pathologic B cell responses.


Asunto(s)
Linfocitos B/inmunología , Interleucinas/metabolismo , Lupus Eritematoso Sistémico/inmunología , Proteínas Proto-Oncogénicas c-maf/metabolismo , Linfocitos T Colaboradores-Inductores/inmunología , Adulto , Anciano , Antígeno CD11c/metabolismo , Sistemas CRISPR-Cas/genética , Estudios de Casos y Controles , Comunicación Celular/efectos de los fármacos , Comunicación Celular/genética , Comunicación Celular/inmunología , Técnicas de Cultivo de Célula , Separación Celular , Células Cultivadas , Técnicas de Cocultivo , Femenino , Citometría de Flujo , Técnicas de Inactivación de Genes , Humanos , Interleucinas/antagonistas & inhibidores , Lupus Eritematoso Sistémico/sangre , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/genética , Masculino , Persona de Mediana Edad , Receptor de Muerte Celular Programada 1/metabolismo , Proteínas Proto-Oncogénicas c-maf/genética , RNA-Seq , Receptores CXCR5/metabolismo , Linfocitos T Colaboradores-Inductores/metabolismo
10.
Endocrinology ; 149(7): 3306-12, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18356271

RESUMEN

Immunocytochemical studies have shown that nuclear and extranuclear estrogen receptors (ERs) are present in several extrahypothalamic brain regions. The goal of this study was to determine the subcellular location of functional ERs, particularly extranuclear ERs, by demonstrating (125)I-estradiol binding in the rat forebrain and medullary sections prepared for light and electron microscopic autoradiography. Some sections were immunocytochemically labeled with the catecholamine-synthesizing enzyme, tyrosine hydroxylase (TH), prior to the autoradiographic procedure. By light microscopy, dense accumulations of silver grains denoting (125)I-estradiol binding were observed over cells in the ventromedial and arcuate hypothalamic nuclei, amygdala, and nucleus of the solitary tract. In sections labeled for TH, large accumulations of silver grains were admixed with TH-labeled processes in the medial nucleus of the amygdala and over TH-labeled perikarya in the medial and commissural nucleus of the solitary tract. Electron microscopic analyses were focused on the rostral ventrolateral medulla and the hippocampal CA1 region, two regions previously shown to have extranuclear ERs. In the rostral ventrolateral medulla, silver grains indicative of (125)I-estradiol binding were found within a few large terminals, affiliated with mitochondria. In the hippocampus, autoradiographic silver grains denoting (125)I-estradiol binding were associated with mitochondria in dendritic shafts or were near synaptic specializations on dendritic spines. These patterns of silver grain labeling were not seen in sections from rats that received (125)I-estradiol combined with cold estradiol. The association of (125)I-estradiol binding with pre- and postsynaptic profiles supports a functional role for nonnuclear ERs in brain.


Asunto(s)
Estrógenos/metabolismo , Prosencéfalo/metabolismo , Receptores de Estrógenos/metabolismo , Animales , Sitios de Unión , Estradiol/metabolismo , Femenino , Inmunohistoquímica , Radioisótopos de Yodo , Microscopía Electrónica , Modelos Biológicos , Prosencéfalo/ultraestructura , Unión Proteica , Ratas , Ratas Sprague-Dawley
11.
PLoS One ; 12(7): e0180870, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28719615

RESUMEN

While the immune system is essential for the maintenance of the homeostasis, health and survival of humans, aberrant immune responses can lead to chronic inflammatory and autoimmune disorders. Pharmacological modulation of drug targets in the immune system to ameliorate disease also carry a risk of immunosuppression that could lead to adverse outcomes. Therefore, it is important to understand the 'immune fingerprint' of novel therapeutics as they relate to current and, clinically used immunological therapies to better understand their potential therapeutic benefit as well as immunosuppressive ability that might lead to adverse events such as infection risks and cancer. Since the mechanistic investigation of pharmacological modulators in a drug discovery setting is largely compound- and mechanism-centric but not comprehensive in terms of immune system impact, we developed a human tissue based functional assay platform to evaluate the impact of pharmacological modulators on a range of innate and adaptive immune functions. Here, we demonstrate that it is possible to generate a qualitative and quantitative immune system impact of pharmacological modulators, which might help better understand and predict the benefit-risk profiles of these compounds in the treatment of immune disorders.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Sistema Inmunológico/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Quimiocinas/biosíntesis , Humanos , Sistema Inmunológico/citología , Sistema Inmunológico/inmunología , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/inmunología , Fagocitos/efectos de los fármacos , Fagocitos/inmunología , Fagocitos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Receptores Toll-Like/metabolismo , Transcriptoma/efectos de los fármacos
12.
Brain Res ; 1094(1): 163-78, 2006 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-16696957

RESUMEN

Blood pressure in women increases after menopause, and sympathetic tone in female rats decreases with estrogen injections in the rostral ventrolateral medulla (RVLM) region that contains bulbospinal C1 adrenergic neurons and is involved in blood pressure control. We investigated the anatomical and physiological basis for estrogen effects in the RVLM. Neurons with alpha- or beta-subtypes of estrogen receptor (ER) immunoreactivity (-ir) overlapped in distribution with tyrosine hydroxylase (TH)-containing C1 neurons. Immunoelectron microscopy revealed that ERalpha- and ERbeta-ir had distinct cellular and subcellular distributions. ERalpha-ir was most commonly in TH-lacking profiles, many of which were axons and peptide-containing afferents that contacted TH-containing dendrites. ERalpha-ir was also in some TH-containing dendrites. ERbeta-ir was most frequently in TH-containing somata and dendrites, particularly on endoplasmic reticula, mitochondria, and plasma membranes. In whole-cell patch clamp recordings from isolated bulbospinal RVLM neurons, 17beta-estradiol dose-dependently reduced voltage-gated Ca(++) currents, especially the long-lasting (L-type) component. This inhibition was reversed by washing or prevented by adding the non-subtype-selective ER antagonist ICI182780. An ERbeta-selective agonist, but not an ERalpha-selective agonist, reproduced the Ca(++) current inhibition. The data indicate that estrogens can modulate the function of RVLM C1 bulbospinal neurons either directly, through extranuclear ERbeta, or indirectly through extranuclear ERalpha in selected afferents. Moreover, Ca(++) current inhibition may underlie the decrease in sympathetic tone evoked by local 17beta-estradiol application. These findings provide a structural and functional basis for the effects of estrogens on blood pressure control and suggest a mechanism for the modulation of cardiovascular function by estrogen in women.


Asunto(s)
Vías Eferentes/metabolismo , Epinefrina/metabolismo , Estrógenos/metabolismo , Bulbo Raquídeo/metabolismo , Médula Espinal/metabolismo , Sistema Nervioso Simpático/metabolismo , Animales , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/fisiología , Dendritas/metabolismo , Dendritas/ultraestructura , Relación Dosis-Respuesta a Droga , Vías Eferentes/efectos de los fármacos , Vías Eferentes/ultraestructura , Estradiol/metabolismo , Estradiol/farmacología , Congéneres del Estradiol/farmacología , Antagonistas de Estrógenos/farmacología , Receptor alfa de Estrógeno/agonistas , Receptor alfa de Estrógeno/antagonistas & inhibidores , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/agonistas , Receptor beta de Estrógeno/antagonistas & inhibidores , Receptor beta de Estrógeno/metabolismo , Estrógenos/farmacología , Femenino , Hipertensión/etiología , Hipertensión/fisiopatología , Bulbo Raquídeo/efectos de los fármacos , Bulbo Raquídeo/ultraestructura , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Técnicas de Placa-Clamp , Posmenopausia/metabolismo , Terminales Presinápticos/metabolismo , Terminales Presinápticos/ultraestructura , Ratas , Ratas Sprague-Dawley , Médula Espinal/efectos de los fármacos , Médula Espinal/ultraestructura , Sistema Nervioso Simpático/efectos de los fármacos , Sistema Nervioso Simpático/ultraestructura , Tirosina 3-Monooxigenasa/metabolismo
13.
J Steroid Biochem Mol Biol ; 163: 88-97, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27106747

RESUMEN

The androgen receptor (AR) is a member of the nuclear hormone receptor super family of transcription factors. Androgens play an essential role in the development, growth, and maintenance of male sex organs, as well as the musculoskeletal and central nervous systems. Yet with advancing age, androgens can drive the onset of prostate cancer, the second leading cause of cancer death in males within the United States. Androgen deprivation therapy (ADT) by pharmacologic and/or surgical castration induces apoptosis of prostate cells and subsequent shrinkage of the prostate and prostate tumors. However, ADT is associated with significant musculoskeletal and behavioral adverse effects. The unique pharmacological activity of selective androgen receptor modulator (SARM) MK-4541 recently has been reported as an AR antagonist with 5α-reductase inhibitor function. The molecule inhibits proliferation and induces apoptosis in AR positive, androgen dependent prostate cancer cells. Importantly, MK-4541 inhibited androgen-dependent prostate growth in male rats yet maintained lean body mass and bone formation following ovariectomy in female rats. In the present study, we evaluated the effects of SARM MK-4541 in the androgen-dependent Dunning R3327-G prostate carcinoma xenograft mouse model as well as on skeletal muscle mass and function, and AR-regulated behavior in mice. MK-4541 significantly inhibited the growth of R3327-G prostate tumors, exhibited anti-androgen effects on the seminal vesicles, reduced plasma testosterone concentrations in intact males, and inhibited Ki67 expression. MK-4541 treated xenografts appeared similar to xenografts in castrated mice. Importantly, we demonstrate that MK-4541 exhibited anabolic activity in androgen deficient conditions, increasing lean body mass and muscle function in adult castrated mice. Moreover, MK-4541 treatment restored general activity levels in castrated mice. Thus, MK-4541 exhibits an optimum profile as an adjuvant therapy to ADT which may provide potent anti-androgenic activity at the prostate yet protective activity on skeletal muscle and behavior in patients.


Asunto(s)
Anabolizantes/farmacología , Antagonistas de Andrógenos/farmacología , Antineoplásicos/farmacología , Azaesteroides/farmacología , Carbamatos/farmacología , Carcinoma/tratamiento farmacológico , Músculo Esquelético/efectos de los fármacos , Neoplasias de la Próstata/tratamiento farmacológico , Animales , Carcinoma/genética , Carcinoma/metabolismo , Carcinoma/patología , Quimioterapia Adyuvante/métodos , Humanos , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Masculino , Ratones , Músculo Esquelético/metabolismo , Orquiectomía , Próstata/efectos de los fármacos , Próstata/metabolismo , Próstata/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Testosterona/antagonistas & inhibidores , Testosterona/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Br J Pharmacol ; 173(21): 3080-3087, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27417329

RESUMEN

BACKGROUND AND PURPOSE: Asthma presents as a heterogeneous syndrome characterized by airway obstruction, inflammation and hyper-reactivity (AHR). Spleen tyrosine kinase (Syk) mediates allergen-induced mast cell degranulation, a central component of allergen-induced inflammation and AHR. However, the role of Syk in IgE-mediated constriction of human small airways remains unknown. In this study, we addressed whether selective inhibition of Syk attenuates IgE-mediated constriction and mast cell mediator release in human small airways. EXPERIMENTAL APPROACH: Human precision cut lung slices (hPCLS) ex vivo derived from non-asthmatic donors were incubated overnight with human IgE, dexamethasone, montelukast, antihistamines or a selective Syk inhibitor (SYKi). High-affinity IgE receptor (FcεRI) activation by anti-IgE cross-linking was performed, and constriction and mediator release measured. Airway constriction was normalized to that induced by maximal carbachol stimulation. Syk expression (determined by qPCR and immunoblot) was also evaluated in human primary airway smooth muscle (HASM) cells to determine whether Syk directly modulates HASM function. KEY RESULTS: While dexamethasone had little effect on FcεR-mediated contraction, montelukast or antihistamines partially attenuated the response. SYKi abolished anti-IgE-mediated contraction and suppressed the release of mast cell or basophil mediators from the IgE-treated hPCLS. In contrast, SYKi had little effect on the non-allergic contraction induced by carbachol. Syk mRNA and protein were undetectable in HASM cells. CONCLUSIONS AND IMPLICATIONS: A selective Syk inhibitor, but not corticosteroids, abolished FcεR-mediated contraction in human small airways ex vivo. The mechanism involved FcεRI receptor activation on mast cells or basophils that degranulate causing airway constriction, rather than direct actions on HASM.


Asunto(s)
Inmunoglobulina E/inmunología , Pulmón/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Bazo/enzimología , Células Cultivadas , Humanos , Técnicas In Vitro , Pulmón/citología , Pulmón/enzimología , Pulmón/inmunología , Contracción Muscular/efectos de los fármacos , Contracción Muscular/inmunología , Músculo Liso/enzimología , Músculo Liso/inmunología , Inhibidores de Proteínas Quinasas/química , Proteínas Tirosina Quinasas/metabolismo
15.
Biol Psychiatry ; 57(8): 938-42, 2005 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-15820717

RESUMEN

BACKGROUND: Distinct expression patterns of estrogen receptor (ER)-alpha and ER-beta are displayed in the murine central nervous system. ER-beta is the predominant form of the receptor expressed in the murine midbrain dorsal raphe nucleus (DRN). Tryptophan hydroxylase (TPH) is abundantly expressed in the serotonergic neurons of the DRN and is regulated by estrogen in both the monkey and the guinea pig. METHODS: In this study we used immunocytochemistry to show that ER-beta and TPH are colocalized in the serotonergic cells of the murine DRN. We utilized the ER-alpha and ER-beta gene deletion mouse models and in situ hybridization to demonstrate that ER-beta is responsible for regulating TPH1 mRNA expression. RESULTS: Estrogen increased TPH1 mRNA expression in the DRN of wild type and ER-alpha knockout mice (alpha-ERKO) but not ER-beta knockouts (beta-ERKO). CONCLUSIONS: These data indicate that ER-beta is responsible for mediating estrogen regulated TPH1 expression in the murine DRN.


Asunto(s)
Receptor beta de Estrógeno/fisiología , Mesencéfalo/metabolismo , Núcleos del Rafe/metabolismo , Triptófano Hidroxilasa/biosíntesis , Animales , Células Cultivadas , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/fisiología , Receptor beta de Estrógeno/genética , Inmunohistoquímica , Hibridación in Situ , Mesencéfalo/enzimología , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Ovariectomía , Núcleos del Rafe/enzimología , Serotonina/fisiología
16.
J Comp Neurol ; 491(2): 81-95, 2005 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-16127691

RESUMEN

Several lines of evidence indicate that estrogen affects hippocampal synaptic plasticity through rapid nongenomic mechanisms, possibly by binding to plasma membrane estrogen receptors (ERs). We have previously shown that ERalpha immunoreactivity (ir) is in select interneuron nuclei and in several extranuclear locations, including dendritic spines and axon terminals, within the rat hippocampal formation (Milner et al., [2001] J Comp Neurol 429:355). The present study sought to determine the cellular and subcellular locations of ERbeta-ir. Coronal hippocampal sections from diestrus rats were immunolabeled with antibodies to ERbeta and examined by light and electron microscopy. By light microscopy, ERbeta-ir was primarily in the perikarya and proximal dendrites of pyramidal and granule cells. ERbeta-ir was also in a few nonprincipal cells and scattered nuclei in the ventral subiculum and CA3 region. Ultrastructural analysis revealed ERbeta-ir at several extranuclear sites in all hippocampal subregions. ERbeta-ir was affiliated with cytoplasmic organelles, especially endomembranes and mitochondria, and with plasma membranes primarily of principal cell perikarya and proximal dendrites. ERbeta-ir was in dendritic spines, many arising from pyramidal and granule cell dendrites. In both dendritic shafts and spines, ERbeta-ir was near the perisynaptic zone adjacent to synapses formed by unlabeled terminals. ERbeta-ir was in preterminal axons and axon terminals, associated with clusters of small, synaptic vesicles. ERbeta-labeled terminals formed both asymmetric and symmetric synapses with dendrites. ERbeta-ir also was detected in glial profiles. The cellular and subcellular localization of ERbeta-ir was generally similar to that of ERalpha, except that ERbeta was more extensively found at extranuclear sites. These results suggest that ERbeta may serve primarily as a nongenomic transducer of estrogen actions in the hippocampal formation.


Asunto(s)
Receptor beta de Estrógeno/metabolismo , Hipocampo/ultraestructura , Neuronas/ultraestructura , Animales , Axones/metabolismo , Axones/ultraestructura , Espinas Dendríticas/metabolismo , Espinas Dendríticas/ultraestructura , Femenino , Hipocampo/metabolismo , Inmunohistoquímica , Microglía/metabolismo , Microglía/ultraestructura , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología , Sinapsis/metabolismo , Sinapsis/ultraestructura
17.
PLoS One ; 10(2): e0118286, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25706956

RESUMEN

OBJECTIVES: Human airway epithelial cells are the principal target of human rhinovirus (HRV), a common cold pathogen that triggers the majority of asthma exacerbations. The objectives of this study were 1) to evaluate an in vitro air liquid interface cultured human airway epithelial cell model for HRV infection, and 2) to identify gene expression patterns associated with asthma intrinsically and/or after HRV infection using this model. METHODS: Air-liquid interface (ALI) human airway epithelial cell cultures were prepared from 6 asthmatic and 6 non-asthmatic donors. The effects of rhinovirus RV-A16 on ALI cultures were compared. Genome-wide gene expression changes in ALI cultures following HRV infection at 24 hours post exposure were further analyzed using RNA-seq technology. Cellular gene expression and cytokine/chemokine secretion were further evaluated by qPCR and a Luminex-based protein assay, respectively. MAIN RESULTS: ALI cultures were readily infected by HRV. RNA-seq analysis of HRV infected ALI cultures identified sets of genes associated with asthma specific viral responses. These genes are related to inflammatory pathways, epithelial structure and remodeling and cilium assembly and function, including those described previously (e.g. CCL5, CXCL10 and CX3CL1, MUC5AC, CDHR3), and novel ones that were identified for the first time in this study (e.g. CCRL1). CONCLUSIONS: ALI-cultured human airway epithelial cells challenged with HRV are a useful translational model for the study of HRV-induced responses in airway epithelial cells, given that gene expression profile using this model largely recapitulates some important patterns of gene responses in patients during clinical HRV infection. Furthermore, our data emphasize that both abnormal airway epithelial structure and inflammatory signaling are two important asthma signatures, which can be further exacerbated by HRV infection.


Asunto(s)
Asma/genética , Asma/virología , Diferenciación Celular/genética , Células Epiteliales/virología , Infecciones por Picornaviridae/genética , Sistema Respiratorio/virología , Adolescente , Adulto , Células Cultivadas , Quimiocinas/genética , Niño , Femenino , Expresión Génica/genética , Humanos , Inflamación/genética , Inflamación/virología , Masculino , Persona de Mediana Edad , Infecciones por Picornaviridae/virología , Rhinovirus , Transducción de Señal/genética
18.
Endocrinology ; 144(5): 2055-67, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12697714

RESUMEN

Estrogen receptor alpha (ER alpha) and ER beta are members of the steroid nuclear receptor family that modulate gene transcription in an estrogen-dependent manner. ER mRNA and protein have been detected both peripherally and in the central nervous system, with most data having come from the rat. Here we report the development of an ER beta-selective antibody that cross-reacts with mouse, rat, and human ER beta protein and its use to determine the distribution of ER beta in the murine brain. Further, a previously characterized polyclonal antibody to ER alpha was used to compare the distribution of the two receptors in the first comprehensive description of ER distribution specifically in the mouse brain. ER beta immunoreactivity (ir) was primarily localized to cell nuclei within select regions of the brain, including the olfactory bulb, cerebral cortex, septum, preoptic area, bed nucleus of the stria terminalis, amygdala, paraventricular hypothalamic nucleus, thalamus, ventral tegmental area, substantia nigra, dorsal raphe, locus coeruleus, and cerebellum. Extranuclear-ir was detected in several areas, including fibers of the olfactory bulb, CA3 stratum lucidum, and CA1 stratum radiatum of the hippocampus and cerebellum. Although both receptors were generally expressed in a similar distribution through the brain, nuclear ER alpha-ir was the predominant subtype in the hippocampus, preoptic area, and most of the hypothalamus, whereas it was sparse or absent from the cerebral cortex and cerebellum. Collectively, these findings demonstrate the region-selective expression of ER beta and ER alpha in the adult ovariectomized mouse brain. These data provide an anatomical framework for understanding the mechanisms by which estrogen regulates specific neural systems in the mouse.


Asunto(s)
Encéfalo/metabolismo , Receptores de Estrógenos/metabolismo , Secuencia de Aminoácidos/genética , Animales , Células COS , Línea Celular , Receptor alfa de Estrógeno , Receptor beta de Estrógeno , Femenino , Humanos , Técnicas Inmunológicas , Insectos , Ratones , Datos de Secuencia Molecular , Conejos , Ratas , Receptores de Estrógenos/genética , Homología de Secuencia de Aminoácido , Distribución Tisular
19.
J Comp Neurol ; 463(4): 390-401, 2003 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-12836175

RESUMEN

Cholinergic septohippocampal neurons are affected by circulating estrogens. Previously, we found that extranuclear estrogen receptor-alpha (ERalpha) immunoreactivity in presynaptic profiles had an overlapping distribution with cholinergic afferents in the rat hippocampal formation. To determine the subcellular relationships between cholinergic presynaptic profiles and ERalpha, hippocampal sections were dually immunolabeled for vesicular acetylcholine transporter (VAChT) and ERalpha and examined by electron microscopy. Within the hippocampal formation, immunoreactivities for VAChT and ERalpha both were presynaptic, although their subcellular targeting was distinct. VAChT immunoreactivity was found exclusively within presynaptic profiles and was associated with small synaptic vesicles, which usually filled axon terminals. VAChT-labeled presynaptic profiles were most concentrated in stratum oriens of the hippocampal CA1 region and dentate inner molecular layer and hilus. In contrast, ERalpha immunoreactivity was found in clusters affiliated either with select vesicles or with the plasmalemma within preterminal axons and axon terminals. ERalpha-immunoreactive (IR) presynaptic profiles were more evenly distributed between hippocampal lamina than VAChT-IR profiles. Quantitative ultrastructural analysis revealed that VAChT-IR presynaptic profiles contained ERalpha immunoreactivity (ranging from 3% to 17%, depending on the lamina). Additionally, VAChT-IR presynaptic profiles apposed ERalpha-IR dendritic spines, presynaptic profiles, and glial profiles; many of the latter two types of profiles abutted unlabeled dendritic spines that received asymmetric (excitatory-type) synapses from unlabeled terminals. The presence of ERalpha immunoreactivity in cholinergic terminals suggests that estrogen could rapidly and directly affect the local release and/or uptake of acetylcholine. The affiliation of cholinergic terminals with excitatory terminals near ERalpha-labeled dendritic spines or glial profiles suggests that alterations in acetylcholine release could indirectly affect estrogen-modulated structural plasticity.


Asunto(s)
Fibras Colinérgicas/ultraestructura , Hipocampo/química , Hipocampo/citología , Proteínas de Transporte de Membrana , Receptores de Estrógenos , Proteínas de Transporte Vesicular , Animales , Proteínas Portadoras/análisis , Receptor alfa de Estrógeno , Femenino , Inmunohistoquímica , Terminales Presinápticos/ultraestructura , Ratas , Ratas Sprague-Dawley , Receptores de Estrógenos/ultraestructura , Proteínas de Transporte Vesicular de Acetilcolina
20.
Brain Res ; 932(1-2): 129-34, 2002 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-11911870

RESUMEN

Fluorescence immunohistochemistry was performed to characterize the distribution and phenotype of GLUT8-positive neurons in rat brain and to compare the cellular distribution of GLUT8 with GLUT3 in the hippocampus. Based upon the absence of co-localization with the non-neuronal markers GFAP (astroglial) and OX42 (microglial), it appears that GLUT8 is expressed exclusively in neurons. At the cellular level, GLUT8 immunofluorescence was localized to neuronal cell bodies and the most proximal dendrites of inhibitory and excitatory neurons while GLUT3 immunofluorescence was localized to the neuropil in the hippocampus. These results demonstrate that GLUT8 is a neuron-specific glucose transporter expressed in the neuronal cell bodies of excitatory and inhibitory neurons in the rat hippocampus.


Asunto(s)
Hipocampo/química , Proteínas de Transporte de Monosacáridos/metabolismo , Proteínas del Tejido Nervioso , Neuronas/química , Animales , Proteínas Facilitadoras del Transporte de la Glucosa , Transportador de Glucosa de Tipo 3 , Hipocampo/metabolismo , Proteínas de Transporte de Monosacáridos/biosíntesis , Neuronas/metabolismo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA