Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Kidney Blood Press Res ; 49(1): 114-123, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38246148

RESUMEN

INTRODUCTION: A comprehensive pathophysiological mechanism to explain the relationship between high-salt intake and hypertension remains undefined. Evidence suggests that chloride, as the accompanying anion of sodium in dietary salt, is necessary to develop hypertension. We evaluated whether reducing dietary Cl- while keeping a standard Na+ intake modified blood pressure, cardiac hypertrophy, renal function, and vascular contractility after angiotensin II (AngII) infusion. METHODS: C56BL/6J mice fed with standard Cl- diet or a low-Cl- diet (equimolar substitution of Cl- by a mixture of Na+ salts, both diets with standard Na+ content) received AngII (infusion of 1.5 mg/kg/day) or vehicle for 14 days. We measured systolic blood pressure (SBP), glomerular filtration rate (GFR), natriuretic response to acute saline load, and contractility of aortic rings from mice infused with vehicle and AngII, in standard and low-Cl- diet. RESULTS: The mice fed the standard diet presented increased SBP and cardiac hypertrophy after AngII infusion. In contrast, low-Cl- diet prevented the increase of SBP and cardiac hypertrophy. AngII-infused mice fed a standard diet presented hampered natriuretic response to saline load, meanwhile the low-Cl- diet preserved natriuretic response in AngII-infused mice, without change in GFR. Aortic rings from mice fed with standard diet or low-Cl- diet and infused with AngII presented a similar contractile response. CONCLUSION: We conclude that the reduction in dietary Cl- as the accompanying anion of sodium in salt is protective from AngII pro-hypertensive actions due to a beneficial effect on kidney function and preserved natriuresis.


Asunto(s)
Angiotensina II , Presión Sanguínea , Hipertensión , Riñón , Animales , Ratones , Angiotensina II/farmacología , Presión Sanguínea/efectos de los fármacos , Cardiomegalia/prevención & control , Cardiomegalia/inducido químicamente , Cloruros/administración & dosificación , Cloruros/farmacología , Tasa de Filtración Glomerular/efectos de los fármacos , Hipertensión/inducido químicamente , Hipertensión/prevención & control , Riñón/efectos de los fármacos , Ratones Endogámicos C57BL , Cloruro de Sodio Dietético/efectos adversos , Cloruro de Sodio Dietético/administración & dosificación
2.
Kidney Int ; 93(5): 1131-1141, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29395333

RESUMEN

It is accepted that osteoblasts/osteocytes are the major source for circulating fibroblast growth factor 23 (FGF23). However, erythropoietic cells of bone marrow also express FGF23. The modulation of FGF23 expression in bone marrow and potential contribution to circulating FGF23 has not been well studied. Moreover, recent studies show that plasma FGF23 may increase early during acute kidney injury (AKI). Erythropoietin, a kidney-derived hormone that targets erythropoietic cells, increases in AKI. Here we tested whether an acute increase of plasma erythropoietin induces FGF23 expression in erythropoietic cells of bone marrow thereby contributing to the increase of circulating FGF23 in AKI. We found that erythroid progenitor cells of bone marrow express FGF23. Erythropoietin increased FGF23 expression in vivo and in bone marrow cell cultures via the homodimeric erythropoietin receptor. In experimental AKI secondary to hemorrhagic shock or sepsis in rodents, there was a rapid increase of plasma erythropoietin, and an induction of bone marrow FGF23 expression together with a rapid increase of circulating FGF23. Blockade of the erythropoietin receptor fully prevented the induction of bone marrow FGF23 and partially suppressed the increase of circulating FGF23. Finally, there was an early increase of both circulating FGF23 and erythropoietin in a cohort of patients with severe sepsis who developed AKI within 48 hours of admission. Thus, increases in plasma erythropoietin and erythropoietin receptor activation are mechanisms implicated in the increase of plasma FGF23 in AKI.


Asunto(s)
Lesión Renal Aguda/sangre , Células de la Médula Ósea/metabolismo , Células Precursoras Eritroides/metabolismo , Eritropoyetina/sangre , Factores de Crecimiento de Fibroblastos/sangre , Lesión Renal Aguda/etiología , Animales , Células de la Médula Ósea/efectos de los fármacos , Modelos Animales de Enfermedad , Células Precursoras Eritroides/efectos de los fármacos , Eritropoyetina/farmacología , Factor-23 de Crecimiento de Fibroblastos , Humanos , Masculino , Ratones Endogámicos C57BL , Estudios Prospectivos , Ratas Sprague-Dawley , Receptores de Eritropoyetina/agonistas , Receptores de Eritropoyetina/metabolismo , Proteínas Recombinantes/farmacología , Sepsis/sangre , Sepsis/complicaciones , Choque Hemorrágico/sangre , Choque Hemorrágico/complicaciones , Factores de Tiempo , Regulación hacia Arriba
3.
Am J Physiol Renal Physiol ; 310(11): F1216-28, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-26911844

RESUMEN

Extracellular proton-secreting transport systems that contribute to extracellular pH include the vacuolar H(+)-ATPase (V-ATPase). This pump, which mediates ATP-driven transport of H(+) across membranes, is involved in metastasis. We previously showed (Alzamora R, Thali RF, Gong F, Smolak C, Li H, Baty CJ, Bertrand CA, Auchli Y, Brunisholz RA, Neumann D, Hallows KR, Pastor-Soler NM. J Biol Chem 285: 24676-24685, 2010) that V-ATPase A subunit phosphorylation at Ser-175 is important for PKA-induced V-ATPase activity at the membrane of kidney intercalated cells. However, Ser-175 is also located within a larger phosphorylation consensus sequence for Aurora kinases, which are known to phosphorylate proteins that contribute to the pathogenesis of metastatic carcinomas. We thus hypothesized that Aurora kinase A (AURKA), overexpressed in aggressive carcinomas, regulates the V-ATPase in human kidney carcinoma cells (Caki-2) via Ser-175 phosphorylation. We found that AURKA is abnormally expressed in Caki-2 cells, where it binds the V-ATPase A subunit in an AURKA phosphorylation-dependent manner. Treatment with the AURKA activator anacardic acid increased V-ATPase expression and activity at the plasma membrane of Caki-2 cells. In addition, AURKA phosphorylates the V-ATPase A subunit at Ser-175 in vitro and in Caki-2 cells. Immunolabeling revealed that anacardic acid induced marked membrane accumulation of the V-ATPase A subunit in transfected Caki-2 cells. However, anacardic acid failed to induce membrane accumulation of a phosphorylation-deficient Ser-175-to-Ala (S175A) A subunit mutant. Finally, S175A-expressing cells had decreased migration in a wound-healing assay compared with cells expressing wild-type or a phospho-mimetic Ser-175-to-Asp (S175D) mutant A subunit. We conclude that AURKA activates the V-ATPase in kidney carcinoma cells via phosphorylation of Ser-175 in the V-ATPase A subunit. This regulation contributes to kidney carcinoma V-ATPase-mediated extracellular acidification and cell migration.


Asunto(s)
Aurora Quinasa A/metabolismo , Carcinoma/metabolismo , Neoplasias Renales/metabolismo , Riñón/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Ácidos Anacárdicos/farmacología , Carcinoma/patología , Línea Celular Tumoral , Humanos , Riñón/efectos de los fármacos , Riñón/patología , Neoplasias Renales/patología , Fosforilación/efectos de los fármacos
4.
Am J Physiol Renal Physiol ; 305(7): F943-56, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23863464

RESUMEN

The vacuolar H(+)-ATPase (V-ATPase) in intercalated cells contributes to luminal acidification in the kidney collecting duct and nonvolatile acid excretion. We previously showed that the A subunit in the cytoplasmic V1 sector of the V-ATPase (ATP6V1A) is phosphorylated by the metabolic sensor AMP-activated protein kinase (AMPK) in vitro and in kidney cells. Here, we demonstrate that treatment of rabbit isolated, perfused collecting ducts with the AMPK activator 5-aminoimidazole-4-carboxamide-1-ß-D-ribofuranoside (AICAR) inhibited V-ATPase-dependent H(+) secretion from intercalated cells after an acid load. We have identified by mass spectrometry that Ser-384 is a major AMPK phosphorylation site in the V-ATPase A subunit, a result confirmed by comparing AMPK-dependent phosphate labeling of wild-type A-subunit (WT-A) with that of a Ser-384-to-Ala A subunit mutant (S384A-A) in vitro and in intact HEK-293 cells. Compared with WT-A-expressing HEK-293 cells, S384A-A-expressing cells exhibited greater steady-state acidification of HCO3(-)-containing media. Moreover, AICAR treatment of clone C rabbit intercalated cells expressing the WT-A subunit reduced V-ATPase-dependent extracellular acidification, an effect that was blocked in cells expressing the phosphorylation-deficient S384A-A mutant. Finally, expression of the S384A-A mutant prevented cytoplasmic redistribution of the V-ATPase by AICAR in clone C cells. In summary, direct phosphorylation of the A subunit at Ser-384 by AMPK represents a novel regulatory mechanism of the V-ATPase in kidney intercalated cells. Regulation of the V-ATPase by AMPK may couple V-ATPase activity to cellular metabolic status with potential relevance to ischemic injury in the kidney and other tissues.


Asunto(s)
Proteínas Quinasas Activadas por AMP/fisiología , Túbulos Renales Colectores/enzimología , ATPasas de Translocación de Protón Vacuolares/metabolismo , Equilibrio Ácido-Base , Animales , Citosol/enzimología , Femenino , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Espectrometría de Masas , Fosforilación , Conejos
5.
J Physiol ; 589(Pt 21): 5091-107, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21911611

RESUMEN

The KCNQ1 potassium channel associates with various KCNE ancillary subunits that drastically affect channel gating and pharmacology. Co-assembly with KCNE3 produces a current with nearly instantaneous activation, some time-dependent activation at very positive potentials, a linear current-voltage relationship and a 10-fold higher sensitivity to chromanol 293B. KCNQ1:KCNE3 channels are expressed in colonic crypts and mediate basolateral K(+) recycling required for Cl(-) secretion. We have previously reported the female-specific anti-secretory effects of oestrogen via KCNQ1:KCNE3 channel inhibition in colonic crypts. This study was designed to determine whether sex and oestrogen regulate the expression and function of KCNQ1 and KCNE3 in rat distal colon. Colonic crypts were isolated from Sprague-Dawley rats and used for whole-cell patch-clamp and to extract total RNA and protein. Sheets of epithelium were used for short-circuit current recordings. KCNE1 and KCNE3 mRNA and protein abundance were significantly higher in male than female crypts. No expression of KCNE2 was found and no difference was observed in KCNQ1 expression between male and female (at oestrus) colonic crypts. Male crypts showed a 2.2-fold higher level of association of KCNQ1 and KCNE3 compared to female cells. In female colonic crypts, KCNQ1 and KCNE3 protein expression fluctuated throughout the oestrous cycle and 17ß-oestradiol (E2 10 nM) produced a rapid (<15 min) dissociation of KCNQ1 and KCNE3 in female crypts only. Whole-cell K(+) currents showed a linear current-voltage relationship in male crypts, while K(+) currents in colonic crypts isolated from females displayed voltage-dependent outward rectification. Currents in isolated male crypts and epithelial sheets were 10-fold more sensitive to specific KCNQ1 inhibitors, such as chromanol 293B and HMR-1556, than in female. The effect of E2 on K(+) currents mediated by KCNQ1 with or without different ß-subunits was assayed from current-voltage relations elicited in CHO cells transfected with KCNQ1 and KCNE3 or KCNE1 cDNA. E2 (100 nM) reduced the currents mediated by the KCNQ1:KCNE3 potassium channel and had no effect on currents via KCNQ1:KCNE1 or KCNQ1 alone. Currents mediated by the complex formed by KCNQ1 and the mutant KCNE3-S82A ß-subunit (mutation of the site for PKCδ-promoted phosphorylation and modulation of the activity of KCNE3) showed rapid run-down and insensitivity to E2. Together, these data suggest that oestrogen regulates the expression of the KCNE1 and KCNE3 and with it the gating and pharmacological properties of the K(+) conductance required for Cl(-) secretion. The decreased association of the KCNQ1:KCNE3 channel complex promoted by oestrogen exposure underlies the molecular mechanism for the sexual dimorphism and oestrous cycle dependence of the anti-secretory actions of oestrogen in the intestine.


Asunto(s)
Colon/fisiología , Estrógenos/fisiología , Canales de Potasio con Entrada de Voltaje/fisiología , Animales , Células CHO , Cricetinae , Cricetulus , Femenino , Técnicas In Vitro , Mucosa Intestinal/metabolismo , Canal de Potasio KCNQ1/fisiología , Masculino , Técnicas de Placa-Clamp , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Caracteres Sexuales
6.
J Biol Chem ; 285(32): 24676-85, 2010 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-20525692

RESUMEN

The vacuolar H(+)-ATPase (V-ATPase) is a major contributor to luminal acidification in epithelia of Wolffian duct origin. In both kidney-intercalated cells and epididymal clear cells, cAMP induces V-ATPase apical membrane accumulation, which is linked to proton secretion. We have shown previously that the A subunit in the cytoplasmic V(1) sector of the V-ATPase is phosphorylated by protein kinase A (PKA). Here we have identified by mass spectrometry and mutagenesis that Ser-175 is the major PKA phosphorylation site in the A subunit. Overexpression in HEK-293T cells of either a wild-type (WT) or phosphomimic Ser-175 to Asp (S175D) A subunit mutant caused increased acidification of HCO(3)(-)-containing culture medium compared with cells expressing vector alone or a PKA phosphorylation-deficient Ser-175 to Ala (S175A) mutant. Moreover, localization of the S175A A subunit mutant expressed in HEK-293T cells was more diffusely cytosolic than that of WT or S175D A subunit. Acute V-ATPase-mediated, bafilomycin-sensitive H(+) secretion was up-regulated by a specific PKA activator in HEK-293T cells expressing WT A subunit in HCO(3)(-)-free buffer. In cells expressing the S175D mutant, V-ATPase activity at the membrane was constitutively up-regulated and unresponsive to PKA activators, whereas cells expressing the S175A mutant had decreased V-ATPase activity that was unresponsive to PKA activation. Finally, Ser-175 was necessary for PKA-stimulated apical accumulation of the V-ATPase in a polarized rabbit cell line of collecting duct A-type intercalated cell characteristics (Clone C). In summary, these results indicate a novel mechanism for the regulation of V-ATPase localization and activity in kidney cells via direct PKA-dependent phosphorylation of the A subunit at Ser-175.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Regulación Enzimológica de la Expresión Génica , Riñón/enzimología , ATPasas de Translocación de Protón Vacuolares/metabolismo , Secuencia de Aminoácidos , Animales , Análisis Mutacional de ADN , Humanos , Riñón/fisiología , Espectrometría de Masas/métodos , Ratones , Modelos Biológicos , Datos de Secuencia Molecular , Mutación , Péptidos/química , Fosforilación
7.
J Mol Cell Cardiol ; 49(4): 683-92, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20600102

RESUMEN

Human mutations in the gene PRKAG2 encoding the gamma2 subunit of AMP-activated protein kinase (AMPK) cause a glycogen storage cardiomyopathy. Transgenic mice (TG(T400N)) with the human T400N mutation exhibit inappropriate activation of AMPK and consequent glycogen storage in the heart. Although increased glucose uptake and activation of glycogen synthesis have been documented in PRKAG2 cardiomyopathy, the mechanism of increased glucose uptake has been uncertain. Wildtype (WT), TG(T400N), and TG(alpha2DN) (carrying a dominant negative, kinase dead alpha2 catalytic subunit of AMPK) mice were studied at ages 2-8 weeks. Cardiac mRNA expression of sodium-dependent glucose transporter 1 (SGLT1), but not facilitated-diffusion glucose transporter 1 (GLUT1) or GLUT4, was increased approximately 5- to 7-fold in TG(T400N) mice relative to WT. SGLT1 protein was similarly increased at the cardiac myocyte sarcolemma in TG(T400N) mice. Phlorizin, a specific SGLT1 inhibitor, attenuated cardiac glucose uptake in TG(T400N) mice by approximately 40%, but not in WT mice. Chronic phlorizin treatment reduced cardiac glycogen content by approximately 25% in TG(T400N) mice. AICAR, an AMPK activator, increased cardiac SGLT1 mRNA expression approximately 3-fold in WT mice. Relative to TG(T400N) mice, double transgenic (TG(T400N)/TG(alpha2DN)) mice had decreased ( approximately 50%) cardiac glucose uptake and decreased (approximately 70%) cardiac SGLT1 expression. TG(T400N) hearts had increased binding activity of the transcription factors HNF-1 and Sp1 to the promoter of the gene encoding SGLT1. Our data suggest that upregulation of cardiac SGLT1 is responsible for increased cardiac glucose uptake in the TG(T400N) mouse. Increased AMPK activity leads to upregulation of SGLT1, which in turn mediates increased cardiac glucose uptake.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Glucosa/metabolismo , Transportador 1 de Sodio-Glucosa/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Animales , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Inmunoprecipitación de Cromatina , Humanos , Ratones , Ratones Transgénicos , Reacción en Cadena de la Polimerasa , Transportador 1 de Sodio-Glucosa/genética
8.
Am J Physiol Renal Physiol ; 299(6): F1308-19, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20861072

RESUMEN

The KCNQ1 K(+) channel plays a key role in the regulation of several physiological functions, including cardiac excitability, cardiovascular tone, and body electrolyte homeostasis. The metabolic sensor AMP-activated protein kinase (AMPK) has been shown to regulate a growing number of ion transport proteins. To determine whether AMPK regulates KCNQ1, we studied the effects of AMPK activation on KCNQ1 currents in Xenopus laevis oocytes and collecting duct epithelial cells. AMPK activation decreased KCNQ1 currents and channel surface expression in X. laevis oocytes, but AMPK did not phosphorylate KCNQ1 in vitro, suggesting an indirect regulatory mechanism. As it has been recently shown that the ubiquitin-protein ligase Nedd4-2 inhibits KCNQ1 plasma membrane expression and that AMPK regulates epithelial Na(+) channels via Nedd4-2, we examined the role of Nedd4-2 in the AMPK-dependent regulation of KCNQ1. Channel inhibition by AMPK was blocked in oocytes coexpressing either a dominant-negative or constitutively active Nedd4-2 mutant, or a Nedd4-2 interaction-deficient KCNQ1 mutant, suggesting that Nedd4-2 participates in the regulation of KCNQ1 by AMPK. KCNQ1 is expressed at the basolateral membrane in mouse polarized kidney cortical collecting duct (mpkCCD(c14)) cells and in rat kidney. Treatment with the AMPK activators AICAR (2 mM) or metformin (1 mM) reduced basolateral KCNQ1 currents in apically permeabilized polarized mpkCCD(c14) cells. Moreover, AICAR treatment of rat kidney slices ex vivo induced AMPK activation and intracellular redistribution of KCNQ1 from the basolateral membrane in collecting duct principal cells. AICAR treatment also induced increased ubiquitination of KCNQ1 immunoprecipitated from kidney slice homogenates. These results indicate that AMPK inhibits KCNQ1 activity by promoting Nedd4-2-dependent channel ubiquitination and retrieval from the plasma membrane.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Quinasas Activadas por AMP , Aminoimidazol Carboxamida/análogos & derivados , Animales , Células Epiteliales/efectos de los fármacos , Células HEK293 , Humanos , Canal de Potasio KCNQ1/efectos de los fármacos , Canal de Potasio KCNQ1/metabolismo , Ratones , Ubiquitina-Proteína Ligasas Nedd4 , Ratas , Ribonucleótidos , Proteínas de Xenopus , Xenopus laevis
9.
Am J Physiol Renal Physiol ; 298(5): F1162-9, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20147366

RESUMEN

The vacuolar H(+)-ATPase (V-ATPase) in type A kidney intercalated cells is a major contributor to acid excretion in the collecting duct. The mechanisms of V-ATPase-trafficking regulation in kidney intercalated cells have not been well-characterized. In developmentally related epididymal clear cells, we showed previously that PKA, acting downstream of soluble adenylyl cyclase (sAC), induces V-ATPase apical membrane accumulation. These PKA-mediated effects were inhibited by activators of the metabolic sensor AMP-activated kinase (AMPK) in clear cells. Here, we examined the regulation of V-ATPase subcellular localization in intercalated cells by PKA and AMPK in rat kidney tissue slices ex vivo. Immunofluorescence labeling of kidney slices revealed that the PKA activator N(6)-monobutyryl cAMP (6-MB-cAMP) induced V-ATPase apical membrane accumulation in collecting duct intercalated cells, whereas the V-ATPase had a more cytosolic distribution when incubated in Ringer buffer alone for 30 min. V-ATPase accumulated at the apical membrane in intercalated cells in kidney slices incubated in Ringer buffer for 75 min, an effect that was prevented by treatment with PKA inhibitor (mPKI). The V-ATPase distribution was cytosolic in intercalated cells treated with the carbonic anhydrase inhibitor acetazolamide or the sAC inhibitor KH7, effects that were overridden by 6-MB-cAMP. Preincubation of kidney slices with an AMPK activator blocked V-ATPase apical membrane accumulation induced by 6-MB-cAMP, suggesting that AMPK antagonizes cAMP/PKA effects on V-ATPase distribution. Taken together, our results suggest that in intercalated cells V-ATPase subcellular localization and therefore its activity may be coupled to acid-base status via PKA, and metabolic status via AMPK.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Riñón/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Animales , Anhidrasas Carbónicas/metabolismo , AMP Cíclico/metabolismo , Riñón/citología , Masculino , Modelos Animales , Ratas , Ratas Sprague-Dawley
10.
Am J Physiol Renal Physiol ; 299(1): F167-77, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20462973

RESUMEN

The metabolic sensor AMP-activated protein kinase (AMPK) regulates several transport proteins, potentially coupling transport activity to cellular stress and energy levels. The creatine transporter (CRT; SLC6A8) mediates creatine uptake into several cell types, including kidney epithelial cells, where it has been proposed that CRT is important for reclamation of filtered creatine, a process critical for total body creatine homeostasis. Creatine and phosphocreatine provide an intracellular, high-energy phosphate-buffering system essential for maintaining ATP supply in tissues with high energy demands. To test our hypothesis that CRT is regulated by AMPK in the kidney, we examined CRT and AMPK distribution in the kidney and the regulation of CRT by AMPK in cells. By immunofluorescence staining, we detected CRT at the apical pole in a polarized mouse S3 proximal tubule cell line and in native rat kidney proximal tubules, a distribution overlapping with AMPK. Two-electrode voltage-clamp (TEV) measurements of Na(+)-dependent creatine uptake into CRT-expressing Xenopus laevis oocytes demonstrated that AMPK inhibited CRT via a reduction in its Michaelis-Menten V(max) parameter. [(14)C]creatine uptake and apical surface biotinylation measurements in polarized S3 cells demonstrated parallel reductions in creatine influx and CRT apical membrane expression after AMPK activation with the AMP-mimetic compound 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside. In oocyte TEV experiments, rapamycin and the AMPK activator 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranosyl 5'-monophosphate (ZMP) inhibited CRT currents, but there was no additive inhibition of CRT by ZMP, suggesting that AMPK may inhibit CRT indirectly via the mammalian target of rapamycin pathway. We conclude that AMPK inhibits apical membrane CRT expression in kidney proximal tubule cells, which could be important in reducing cellular energy expenditure and unnecessary creatine reabsorption under conditions of local and whole body metabolic stress.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Creatina/metabolismo , Células Epiteliales/enzimología , Túbulos Renales Proximales/enzimología , Proteínas de Transporte de Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Animales , Biotinilación , Western Blotting , Línea Celular Transformada , Polaridad Celular , Metabolismo Energético , Activación Enzimática , Activadores de Enzimas/farmacología , Células Epiteliales/efectos de los fármacos , Humanos , Inmunohistoquímica , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Túbulos Renales Proximales/citología , Túbulos Renales Proximales/efectos de los fármacos , Cinética , Masculino , Potenciales de la Membrana , Proteínas de Transporte de Membrana/genética , Ratones , Proteínas del Tejido Nervioso/genética , Oocitos , Técnicas de Placa-Clamp , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/genética , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas , Ribonucleótidos/farmacología , Sirolimus/farmacología , Sodio/metabolismo , Serina-Treonina Quinasas TOR , Xenopus laevis
11.
J Bone Miner Res ; 34(10): 1851-1861, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31099911

RESUMEN

Renal transplantation (RTx) is an effective therapy to improve clinical outcomes in pediatric patients with terminal chronic kidney disease. However, chronic immunosuppression with glucocorticoids (GCs) reduces bone growth and BMD. The mechanisms causing GC-induced growth impairment have not been fully clarified. Fibroblast growth factor 23 (FGF23) is a peptide hormone that regulates phosphate homeostasis and bone growth. In pathological conditions, FGF23 excess or abnormal FGF receptors (FGFR) activity leads to bone growth impairment. Experimental data indicate that FGF23 expression is induced by chronic GC exposure. Therefore, we hypothesize that GCs impair bone growth by increasing FGF23 expression, which has direct effects on bone growth plate. In a post hoc analysis of a multicentric randomized clinical trial of prepubertal RTx children treated with early GC withdrawal or chronic GC treatment, we observed that GC withdrawal was associated with improvement in longitudinal growth and BMD, and lower plasma FGF23 levels as compared with a chronic GC group. In prepubertal rats, GC-induced bone growth retardation correlated with increased plasma FGF23 and bone FGF23 expression. Additionally, GC treatment decreased FGFR1 expression whereas it increased FGFR3 expression in mouse tibia explants. The GC-induced bone growth impairment in tibiae explants was prevented by blockade of FGF23 receptors using either a pan-FGFR antagonist (PD173074), a C-terminal FGF23 peptide (FGF23180-205) which blocks the binding of FGF23 to the FGFR-Klotho complex or a specific FGFR3 antagonist (P3). Finally, local administration of PD173074 into the tibia growth plate ameliorated cartilage growth impairment in GC-treated rats. These results show that GC treatment partially reduces longitudinal bone growth via upregulation of FGF23 and FGFR3 expression, thus suggesting that the FGF23/Klotho/FGFR3 axis at the growth plate could be a potential therapeutic target for the management of GC-induced growth impairment in children.


Asunto(s)
Desarrollo Óseo/efectos de los fármacos , Huesos/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Glucocorticoides/administración & dosificación , Trasplante de Riñón , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Densidad Ósea/efectos de los fármacos , Huesos/patología , Niño , Femenino , Factor-23 de Crecimiento de Fibroblastos , Estudios de Seguimiento , Glucocorticoides/efectos adversos , Humanos , Fallo Renal Crónico/metabolismo , Fallo Renal Crónico/patología , Fallo Renal Crónico/cirugía , Proteínas Klotho , Masculino , Proteínas de la Membrana , Ratones , Ratas , Ratas Sprague-Dawley
12.
J Steroid Biochem Mol Biol ; 108(3-5): 310-7, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17951051

RESUMEN

Aldosterone is a crucial modulator of ion transport across high resistance epithelia and regulates whole body electrolyte balance through its effects on the kidney and colon. The net consequence of aldosterone release is to promote salt conservation. The genomic mechanism of aldosterone action is relatively well characterized and the role of the classical mineralocorticoid receptor as a ligand-dependent transcription factor is well established. The rapid effects of aldosterone on target tissues are less well understood and there is still controversy over the identity of the aldosterone non-genomic receptor. Greater understanding of the physiological consequences of aldosterone's rapid responses in the kidney and colon has been achieved through the identification of definite and putative membrane targets and their signaling regulators.


Asunto(s)
Aldosterona/fisiología , Colon/efectos de los fármacos , Riñón/efectos de los fármacos , Intercambiadores de Sodio-Hidrógeno/fisiología , Animales , Señalización del Calcio , Colon/fisiología , Canales Epiteliales de Sodio/fisiología , Humanos , Riñón/fisiología , Canales de Potasio/fisiología , Proteínas Quinasas/fisiología , ATPasas de Translocación de Protón/fisiología , Receptores de Mineralocorticoides/fisiología , ATPasa Intercambiadora de Sodio-Potasio/fisiología , Factores de Tiempo
13.
Steroids ; 73(9-10): 885-8, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18329060

RESUMEN

The non-genomic action of steroid hormones regulates a wide variety of cellular responses including regulation of ion transport, cell proliferation, migration, death and differentiation. In order to achieve such plethora of effects steroid hormones utilize nearly all known signal transduction pathways. One of the key signalling molecules regulating the non-genomic action of steroid hormones is protein kinase C (PKC). It is thought that rapid action of steroids hormones results from the activation of plasma membrane receptors; however, their molecular identity remains elusive. In recent years, an increasing number of studies have pointed at the selective binding and activation of specific PKC isoforms by steroid hormones. This has led to the hypothesis that PKC could act as a receptor as well as a transducer of the non-genomic effects of these hormones. In this review we summarize the current knowledge of the direct binding and activation of PKC by steroid hormones.


Asunto(s)
Proteína Quinasa C/química , Proteína Quinasa C/metabolismo , Esteroides/metabolismo , Aldosterona/metabolismo , Animales , Sitios de Unión , Estradiol/metabolismo , Humanos , Modelos Biológicos , Mutación , Unión Proteica , Isoformas de Proteínas
14.
Mol Endocrinol ; 21(11): 2637-50, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17666590

RESUMEN

Protein kinase C (PKC) is a signal transduction protein that has been proposed to mediate rapid responses to steroid hormones. Previously, we have shown aldosterone directly activates PKCalpha whereas 17beta-estradiol activates PKCalpha and PKCdelta; however, neither the binding to PKCs nor the mechanism of action has been established. To determine the domains of PKCalpha and PKCdelta involved in binding of aldosterone and 17beta-estradiol, glutathione S-transferase fusion recombinant PKCalpha and PKCdelta mutants were used to perform in vitro binding assays with [(3)H]aldosterone and [(3)H]17beta-estradiol. 17beta-Estradiol bound both PKCalpha and PKCdelta but failed to bind PKC mutants lacking a C2 domain. Similarly, aldosterone bound only PKCalpha and mutants containing C2 domains. Thus, the C2 domain is critical for binding of these hormones. Binding affinities for aldosterone and 17beta-estradiol were between 0.5-1.0 nM. Aldosterone and 17beta-estradiol competed for binding to PKCalpha, suggesting they share the same binding site. Phorbol 12,13-dybutyrate did not compete with hormone binding; furthermore, they have an additive effect on PKC activity. EC(50) for activation of PKCalpha and PKCdelta by aldosterone and 17beta-estradiol was approximately 0.5 nM. Immunoblot analysis using a phospho-PKC antibody revealed that upon binding, PKCalpha and PKCdelta undergo autophosphorylation with an EC(50) in the 0.5-1.0 nm range. 17beta-Estradiol activated PKCalpha and PKCdelta in estrogen receptor-positive and -negative breast cancer cells (MCF-7 and HCC-38, respectively), suggesting estrogen receptor expression is not required for 17beta-estradiol-induced PKC activation. The present results provide first evidence for direct binding and activation of PKCalpha and PKCdelta by steroid hormones and the molecular mechanisms involved.


Asunto(s)
Aldosterona/química , Estradiol/metabolismo , Proteína Quinasa C/química , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Activación Enzimática , Ésteres/química , Glutatión Transferasa/metabolismo , Humanos , Cinética , Mutación , Fosforilación , Unión Proteica , Isoformas de Proteínas , Proteínas Recombinantes de Fusión/química , Esteroides/química , Esteroides/metabolismo
15.
Hypertension ; 71(4): 709-718, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29378857

RESUMEN

Increasing evidence shows that antigen-presenting cells (APCs) are involved in the development of inflammation associated to hypertension. However, the potential role of APCs in the modulation of renal sodium transport has not been addressed. We hypothesized that APCs participate in renal sodium transport and, thus, development of high blood pressure in response to angiotensin II plus a high-salt diet. Using transgenic mice that allow the ablation of CD11chigh APCs, we studied renal sodium transport, the intrarenal renin-angiotensin system components, blood pressure, and cardiac/renal tissue damage in response to angiotensin II plus a high-salt diet. Strikingly, we found that APCs are required for the development of hypertension and that the ablation/restitution of APCs produces rapid changes in the blood pressure in mice with angiotensin II plus a high-salt diet. Moreover, APCs were necessary for the induction of intrarenal renin-angiotensin system components and affected the modulation of natriuresis and tubular sodium transporters. Consistent with the prevention of hypertension, the ablation of APCs also prevented cardiac hypertrophy and the induction of several indicators of renal and cardiac damage. Thus, our findings indicate a prominent role of APCs as modulators of blood pressure by mechanisms including renal sodium handling, with kinetics that suggest the involvement of tubular cell functions in addition to the modulation of inflammation and adaptive immune response.


Asunto(s)
Angiotensina II/metabolismo , Células Presentadoras de Antígenos/inmunología , Presión Sanguínea/inmunología , Antígeno CD11c/inmunología , Hipertensión , Cloruro de Sodio Dietético/metabolismo , Animales , Modelos Animales de Enfermedad , Canales Epiteliales de Sodio/inmunología , Hipertensión/inmunología , Hipertensión/fisiopatología , Hipertensión/prevención & control , Inflamación , Transporte Iónico/inmunología , Ratones , Ratones Transgénicos , Células Mieloides/inmunología
16.
Channels (Austin) ; 11(5): 388-398, 2017 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-28636485

RESUMEN

Renal sodium reabsorption depends on the activity of the Na+,K+-ATPase α/ß heterodimer. Four α (α1-4) and 3 ß (ß1-3) subunit isoforms have been described. It is accepted that renal tubule cells express α1/ß1 dimers. Aldosterone stimulates Na+,K+-ATPase activity and may modulate α1/ß1 expression. However, some studies suggest the presence of ß3 in the kidney. We hypothesized that the ß3 isoform of the Na+,K+-ATPase is expressed in tubular cells of the distal nephron, and modulated by mineralocorticoids. We found that ß3 is highly expressed in collecting duct of rodents, and that mineralocorticoids decreased the expression of ß3. Thus, we describe a novel molecular mechanism of sodium pump modulation that may contribute to the effects of mineralocorticoids on sodium reabsorption.


Asunto(s)
Túbulos Renales/metabolismo , Mineralocorticoides/farmacología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Aldosterona/farmacología , Animales , Línea Celular , Membrana Celular/metabolismo , Agonistas del Canal de Sodio Epitelial/farmacología , Canales Epiteliales de Sodio/metabolismo , Masculino , Ratas Sprague-Dawley
17.
Biochim Biophys Acta ; 1566(1-2): 116-28, 2002 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-12421543

RESUMEN

Fifty years ago, Hans Ussing described the mechanism by which ions are actively transported across frog skin. Since then, an enormous amount of effort has been invested in determining the cellular and molecular specifics of the transport mechanisms and their regulatory pathways. Ion transport in high-resistance epithelia is regulated by a variety of hormonal and non-hormonal factors. In vertebrates, steroid hormones such as mineralocorticoids, glucocorticoids and estrogens are major regulators of ion and water transport and hence are central to the control of extracellular fluid volume and blood pressure. Steroid hormones act through nuclear receptors to control the transcriptional activity of specific target genes, such as ion channels, ion transporters and ion pumps. These effects are observed after a latency of several hours and can last for days leading to cellular differentiation that allows a higher transport activity. This pathway is the so-called genomic phase. However, in the past 10 years, it has become apparent that steroid hormones can regulate electrolyte and water transport in tight epithelia independently of the transcription of these ion channels and transporters by regulating ion transporter activity in a non-genomic fashion via modulation of various signal transduction pathways. The molecular mechanisms underlying the steroid hormone-induced activation of signal transduction pathways such as protein kinase C (PKC), protein kinase A (PKA), intracellular calcium, intracellular pH and mitogen-activated protein kinases (MAPKs) and how non-genomic activation of these pathways influences epithelial ion transport will be discussed in this review.


Asunto(s)
Colon/efectos de los fármacos , Hormonas/farmacología , Piel/efectos de los fármacos , Animales , Anuros , Cloruros/metabolismo , Colon/metabolismo , Activación Enzimática/efectos de los fármacos , Epitelio/efectos de los fármacos , Epitelio/metabolismo , Estrógenos/farmacología , Glucocorticoides/farmacología , Humanos , Transporte Iónico/efectos de los fármacos , Mineralocorticoides/farmacología , Proteína Quinasa C/metabolismo , Factores Sexuales , Transducción de Señal/efectos de los fármacos , Piel/metabolismo , Sodio/metabolismo , Intercambiadores de Sodio-Hidrógeno/efectos de los fármacos
18.
Endocrinology ; 144(4): 1266-72, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12639909

RESUMEN

Aldosterone increases Na(+),K(+)-adenosine triphophatase (Na(+),K(+)-ATPase) pump activity and abundance under chronic conditions in several tissues, including rat arterial vessels. The present study was undertaken to evaluate whether aldosterone has also short-term effects on the Na(+),K(+)-ATPase of rat aorta. The pump function was measured as ouabain-sensitive (86)Rb/K uptake in aortic rings. Addition of aldosterone induced a rapid inhibition of the Na(+),K(+)-ATPase (57.0 +/- 2.3% of control values; P < 0.05; n = 8), followed by a return to control values after 120 min. The aldosterone-induced decrease in ouabain-sensitive (86)Rb/K uptake was prevented by the new mineralocorticoid receptor antagonist eplerenone. The inhibition of gene transcription (actinomycin D) or protein synthesis (cycloheximide) had no effect on short-term aldosterone action on Na(+),K(+)-ATPase. The rapid aldosterone inhibition was also observed in the presence of monensin, a sodium-specific ionophore. Rapamycin, an immunosuppressive drug that stabilizes the heat shock protein-steroid receptor complex, blocked the rapid aldosterone effect. Bisindole I, an inhibitor of protein kinase C, also blocked nongenomic action of aldosterone on the Na pump. The nongenomic effect of aldosterone was inhibited by disrupters of microtubule (colchicine). Plasma membrane protein biotinylation of aortic segments and Western blot indicated a diminished presence of catalytic isoforms of Na(+),K(+)-ATPase on the cell surface. Our findings indicate that aldosterone has a nongenomic effect on the Na(+),K(+)-ATPase of vascular tissue. This effect is mediated through protein kinase C activation and implies reduced cell surface abundance of catalytic subunits. These observations together with our previous report on chronic hormone replacement suggest that aldosterone is directly involved in ionic cellular homeostasis of the vascular system through Na pump regulation.


Asunto(s)
Aldosterona/farmacología , Aorta Torácica/enzimología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Espironolactona/análogos & derivados , Animales , Dominio Catalítico , Cicloheximida/farmacología , Dactinomicina/farmacología , Inhibidores Enzimáticos/farmacología , Eplerenona , Indoles/farmacología , Ionóforos/farmacología , Masculino , Maleimidas/farmacología , Antagonistas de Receptores de Mineralocorticoides , Monensina/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , Proteína Quinasa C/antagonistas & inhibidores , Inhibidores de la Síntesis de la Proteína/farmacología , Ratas , Ratas Sprague-Dawley , Sodio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/química , Espironolactona/farmacología , Transcripción Genética/efectos de los fármacos
19.
Steroids ; 67(6): 483-91, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-11960625

RESUMEN

Studies from our laboratory have demonstrated rapid ( < 1 min) non-genomic activation of Na(+)-H(+) exchange, K(+) recycling, PKC activity and a PKC-dependent Ca(2+) entry through L-type Ca(2+) channels specifically by mineralocorticoids in distal colon. Aldosterone directly stimulates the activity of the PKC alpha isoform (but not PKC delta, PKC epsilon and PKC zeta) in a cell-free assay system containing only purified commercially available enzyme, appropriate substrate peptide, co-factors and lipid vesicles. The primary ion transport target of the non-genomic signal transduction cascade elicited by aldosterone in epithelia is the Na(+)-H(+) exchanger. In isolated colonic crypts, aldosterone produced a PKC alpha sensitive intracellular alkalinisation within 1 min of hormone addition. Intracellular alkalinisation upregulates an ATP-dependent K(+) channel, which is involved in K(+) recycling to maintain the electrical driving force for Na(+) absorption, while inhibiting a Ca(2+) -dependent K(+) channel, which generates the charge balance for Cl(-) secretion. The non-genomic response to aldosterone in distal colon appears to enhance the capacity for absorption while down-regulating the potential for secretion. We have also demonstrated rapid (< 1 min) non-genomic activation of Na(+)-H(+) exchange, K(+) recycling, PKC alpha activity, and a PKC delta- and PKA-dependent Ca(2+) entry through di-hydropyridine-blockable Ca(2+) channels specifically by 17beta-estradiol in distal colon. These rapid effects are female gender specific and are insensitive to inhibitors of the classical estrogen receptor (ER). 17 beta-Estradiol directly stimulated the activity of both PKC delta and PKC alpha (but not PKC epsilon or PKC zeta) in a cell-free assay system. E2 rapidly inhibited basolateral K(Ca) channel activity which would be expected to result in an acute inhibition of Cl(-) secretion. Physiological concentrations of E2 (0.1-10 nM) reduced both basal and secretagogue-induced Cl(-) secretion. This anti-secretory effect of E2 is sensitive to PKC inhibition, intracellular Ca(2+) chelation, and is female gender specific and insensitive to inhibitors of the classical ER. These observations link rapid non-genomic activation of second messengers with a rapid gender-specific physiological effect in the whole tissue. Aldosterone and E2 differ in their protein kinase signal transduction and both hormones stimulate specific PKC isoforms indicating both common and divergent signalling systems for salt-retaining steroid hormones. The physiological function of non-genomic effects of aldosterone and estradiol is to shift the balance from net secretion to net absorption in a pluripotential epithelium.


Asunto(s)
Aldosterona/farmacología , Canales de Calcio/metabolismo , Estradiol/farmacología , Transducción de Señal/efectos de los fármacos , Intercambiadores de Sodio-Hidrógeno/efectos de los fármacos , Animales , Canales de Calcio/efectos de los fármacos , Colon/metabolismo , Activación Enzimática/efectos de los fármacos , Epitelio/metabolismo , Femenino , Humanos , Isoenzimas/metabolismo , Masculino , Mamíferos , Fosfolipasas A/metabolismo , Proteína Quinasa C/metabolismo , Proteína Quinasa C-alfa , Ratas , Transducción de Señal/fisiología , Intercambiadores de Sodio-Hidrógeno/metabolismo
20.
Hypertension ; 63(4): 797-803, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24420551

RESUMEN

Adaptive immune response has been implicated in inflammation and fibrosis as a result of exposure to mineralocorticoids and a high-salt diet. We hypothesized that in mineralocorticoid-salt-induced hypertension, activation of the mineralocorticoid receptor alters the T-helper 17 lymphocyte (Th17)/regulatory T-lymphocyte/interleukin-17 (IL-17) pathway, contributing to cardiac and renal damage. We studied the inflammatory response and tissue damage in rats treated with deoxycorticosterone acetate and high-salt diet (DOCA-salt), with or without mineralocorticoid receptor inhibition by spironolactone. To determine whether Th17 differentiation in DOCA-salt rats is caused by hypertension per se, DOCA-salt rats received antihypertensive therapy. In addition, to evaluate the pathogenic role of IL-17 in hypertension and tissue damage, we studied the effect of IL-17 blockade with a specific antibody (anti-IL-17). We found activation of Th17 cells and downregulation of forkhead box P3 mRNA in peripheral tissues, heart, and kidneys of DOCA-salt-treated rats. Spironolactone treatment prevented Th17 cell activation and increased numbers of forkhead box P3-positive cells relative to DOCA-salt rats. Antihypertensive therapy did not ameliorate Th17 activation in rats. Treatment of DOCA-salt rats with anti-IL-17 significantly reduced arterial hypertension as well as expression of profibrotic and proinflammatory mediators and collagen deposits in the heart and kidney. We conclude that mineralocorticoid receptor activation alters the Th17/regulatory T-lymphocyte/IL-17 pathway in mineralocorticoid-dependent hypertension as part of an inflammatory mechanism contributing to fibrosis.


Asunto(s)
Acetato de Desoxicorticosterona/efectos adversos , Cardiopatías/prevención & control , Hipertensión/inducido químicamente , Enfermedades Renales/prevención & control , Espironolactona/farmacología , Linfocitos T Reguladores/efectos de los fármacos , Células Th17/efectos de los fármacos , Animales , Anticuerpos/inmunología , Anticuerpos/farmacología , Acetato de Desoxicorticosterona/farmacología , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/fisiología , Factores de Transcripción Forkhead/efectos de los fármacos , Factores de Transcripción Forkhead/fisiología , Cardiopatías/etiología , Cardiopatías/fisiopatología , Hipertensión/complicaciones , Hipertensión/fisiopatología , Interleucina-17/antagonistas & inhibidores , Interleucina-17/inmunología , Interleucina-17/fisiología , Enfermedades Renales/etiología , Enfermedades Renales/fisiopatología , Masculino , Antagonistas de Receptores de Mineralocorticoides/farmacología , Ratas , Ratas Sprague-Dawley , Receptores de Mineralocorticoides/efectos de los fármacos , Receptores de Mineralocorticoides/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Linfocitos T Reguladores/patología , Células Th17/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA