Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Langmuir ; 27(10): 6418-25, 2011 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-21506575

RESUMEN

Lipid-based lyotropic liquid crystals (LLCs) show great potential for applications in fields as diverse as food technology, cosmetics, pharmaceutics, or structural biology. Recently, these systems have provided a viable alternative to the difficult process of membrane protein crystallization, owing to their similarities with cell membranes. Nonetheless, the process of in-meso crystallization of proteins still remains poorly understood. In this study, we demonstrate that in-meso crystal morphologies of lysozyme (LSZ), a model hydrophilic protein, can be controlled by both the composition and symmetry of the mesophase, inferring a possible general influence of the LLC space group on the protein crystal polymorphism. Lysozyme was crystallized in-meso from three common LLC phases (lamellar, inverse hexagonal, and inverse bicontinuous cubic) composed of monolinolein and water. Different mixing ratios of mesophase to crystallization buffer were used in order to tune crystallization both in the bulk mesophase and in excess water conditions. Two distinct mechanisms of crystallization were shown to take place depending on available water in the mesophases. In the bulk mesophases, protein nuclei form and grow within structural defects of the mesophase and partially dehydrate the system inducing order-to-order transitions of the liquid crystalline phase toward stable symmetries in conditions of lower hydration. The formed protein crystals eventually macrophase separate from the mesophase allowing the system to reach its final symmetry. On the other hand, when excess water is available, protein molecules diffuse from the water channels into the excess water, where the crystallization process can take place freely, and with little to no effect on the structure and symmetry of the lyotropic liquid crystals.


Asunto(s)
Cristalización/métodos , Cristales Líquidos/química , Muramidasa/química , Animales , Tampones (Química) , Cristalografía por Rayos X , Difusión , Solubilidad , Volatilización , Agua/química
2.
Biomacromolecules ; 12(1): 187-93, 2011 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-21142059

RESUMEN

This work presents the structural analysis of amyloid-like ß-lactoglobulin fibrils incubated in ethanol-water mixtures after their formation in water. We observe for the first time the disassembly of semiflexible heat-denatured ß-lactoglobulin fibrils and reassembly into highly flexible wormlike fibrils in ethanol-water solutions. Tapping mode atomic force microscopy is performed to follow structural changes. Our results show that in addition to their growth in length, there is a continuous nucleation process of new wormlike objects with time at the expense of the original ß-lactoglobulin fibrils. The persistence length of wormlike fibrils (29.43 nm in the presence of 50% ethanol), indicative of their degree of flexibility, differs by 2 orders of magnitude from that of untreated ß-lactoglobulin fibrils (2368.75 nm in pure water). Interestingly, wormlike fibrils do not exhibit a multiple strands nature like the pristine fibrils, as revealed by the lower maximum height and the lack of clear height periodicity along their contour length profile. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) demonstrates that the set of polypeptides obtained by ethanol degradation differs in some fractions from that present in pristine ß-lactoglobulin fibrils. ATR-FTIR (attenuated total reflectance-Fourier transform infrared) spectroscopy also supports a different composition of the secondary structure of wormlike fibrils with a decreased amount of α-helix and increased random coils and turns content. These findings can contribute to deciphering the molecular mechanisms of protein aggregation into amyloid fibrils and their disassembly as well as enabling tailor-made production of protein fibrils.


Asunto(s)
Amiloide/química , Etanol/química , Lactoglobulinas/química , Agua/química , Electroforesis en Gel de Poliacrilamida/métodos , Espectroscopía Infrarroja por Transformada de Fourier/métodos
3.
J Phys Chem B ; 112(33): 10171-80, 2008 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-18665631

RESUMEN

The solubilization of four bioactive molecules with different polarities, in three reverse hexagonal (HII) systems has been investigated. The three HII systems were a typical reverse hexagonal composed of glycerol monooleate (GMO)/tricaprylin/water and two fluid hexagonal systems containing either 2.75 wt % Transcutol or ethanol as a fourth component. The phase behavior of the liquid crystalline phases in the presence of ascorbic acid, ascorbyl palmitate, D-alpha-tocopherol and D-alpha-tocopherol acetate were determined by small-angle X-ray scattering (SAXS) and optical microscopy. Differential scanning calorimetry (DSC) and Fourier-transform infrared (FT-IR) techniques were utilized to follow modifications in the thermal behavior and in the vibrations of different functional groups upon solubilizing the bioactive molecules. The nature of each guest molecule (in both geometry and polarity) together with the different HII structures (typical and fluids) determined the corresponding phase behavior, swelling or structural transformations and its location in the HII structures. Ascorbic acid was found to act as a chaotropic guest molecule, localized in the water-rich core and at the interface. The AP was also a chaotropic guest molecule with its head located in the vicinity of the GMO headgroup while its tail embedded close to the surfactant tail. D-alpha-tocopherol and D-alpha-tocopherol acetate were incorporated between the GMO tails; however, the D-alpha-tocopherol was located closer to the interface. Once Transcutol or ethanol was present and upon guest molecule incorporation, partial migration was detected.


Asunto(s)
Suplementos Dietéticos , Ácido Ascórbico/química , Rastreo Diferencial de Calorimetría/métodos , Caprilatos/química , Química Física/métodos , Glicéridos/química , Conformación Molecular , Transición de Fase , Dispersión de Radiación , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura , Termodinámica , Triglicéridos/química , Agua/química , Rayos X , alfa-Tocoferol/química
4.
J Phys Chem B ; 112(13): 3971-82, 2008 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-18324809

RESUMEN

This study reports on the formation of a low viscosity H(II) mesophase at room temperature upon addition of Transcutol (diethylene glycol mono ethyl ether) or ethanol to the ternary mixture of GMO (glycerol monooleate)/TAG (tricaprylin)/water. The microstructure and bulk properties were characterized in comparison with those of the low viscosity HII mesophase formed in the ternary GMO/TAG/water mixture at elevated temperatures (35-40 degrees C). We characterized the role of Transcutol or ethanol as inducers of disorder and surfactant mobility. The techniques used were rheology, differential scanning calorimetry (DSC), wide- and small-angle X-ray scattering (WAXS and SAXS, respectively), NMR (self-diffusion and (2)H NMR), and Fourier transform infrared (FTIR) spectroscopies. The incorporation of either Transcutol or ethanol induced the formation of less ordered HII mesophases with smaller domain sizes and lattice parameters at room temperature (up to 30 degrees C), similar to those found for the GMO/TAG/water mixture at more elevated temperatures (35-40 degrees C). On the basis of our measurements, we suggest that Transcutol or ethanol causes dehydration of the GMO headgroups and enhances the mobility of the GMO chains. As a result, these two small molecules, which compete for water with the GMO polar headgroups, may increase the curvature of the cylindrical micelles and also perhaps reduce their length. This results in the formation of fluid H(II) structures at room temperature (up to 30 degrees C). It is possible that these phases are a prelude to the H(II)-L(2) transformation, which takes place above 35 degrees C.


Asunto(s)
Caprilatos/química , Etanol/química , Glicoles de Etileno/química , Glicéridos/química , Triglicéridos/química , Transición de Fase , Temperatura , Viscosidad , Agua/química , Humectabilidad
5.
J Phys Chem B ; 111(48): 13544-53, 2007 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-17988117

RESUMEN

In the present study we characterized the microstructures of the Lc and HII phases in a glycerol monooleate (GMO)/tricaprylin (TAG)/water mixture as a function of temperature. We studied the factors that govern the formation of a low-viscosity HII phase at relatively elevated temperatures (>35 degrees C). This phase has very valuable physical characteristics and properties. The techniques used were differential scanning calorimetry (DSC), wide- and small-angle X-ray scattering (WAXS and SAXS, respectively), NMR (self-diffusion and (2)H NMR), and Fourier transform infrared (FTIR) spectroscopies. The reverse hexagonal phase exhibited relatively rapid flow of water in the inner channels within the densely packed cylindrical aggregates of GMO with TAG molecules located in the interstices. The existence of two water diffusion peaks reflects the existence of both mobile water and hydration water at the GMO-water interface (hydrogen exchange between the GMO hydroxyls and water molecules). Above 35 degrees C, the sample became fluid yet hexagonal symmetry was maintained. The fluidity of the HII phase is explained by a significant reduction in the domain size and also perhaps cylinder length. This phenomenon was characterized by higher mobility of the GMO, lower mobility of the water, and a significant dehydration process.


Asunto(s)
Glicerol/química , Rastreo Diferencial de Calorimetría , Espectroscopía de Resonancia Magnética , Estructura Molecular , Dispersión de Radiación , Temperatura
6.
Colloids Surf B Biointerfaces ; 43(2): 72-82, 2005 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-15921902

RESUMEN

Lyotropic liquid crystals of glycerol monooleate (GMO) and water binary mixtures have been extensively studied and their resemblance to human membranes has intrigued many scientists. Biological systems as well as food mixtures are composed of lipids and fat components including triacylglycerols (TAGs, triglycerides) that can affect the nature of the assembly of the mesophase. The present study examines the effect of TAGs of different chain lengths (C(2)-C(18)) at various water/GMO compositions, on phase transitions from lamellar or cubic to reverse hexagonal (L(alpha)-H(II) and Q-H(II)). The ability of the triglycerides to promote the formation of an H(II) mesophase is chain length-dependent. It was found that TAG molecules with very short acyl chains (triacetin) can hydrate the head groups of the lipid and do not affect the critical packing parameter (CPP) of the amphiphile; therefore, they do not affect the self-assembly of the GMO in water, and the mesophase remains lamellar or cubic. However, TAGs with medium chain fatty acids will solvate the tails of the lipid, and will affect the CPP of the GMO, and transform the lamellar or cubic phases into hexagonal mesophase. TAGs with long chain fatty acids are very bulky, not very miscible with the GMO, and therefore, kinetically are very slow to solvate the lipid tails of the amphiphile and are difficult to accommodate into the lipophilic parts of the GMO. Their effect on the transitions from a lamellar or cubic phase to hexagonal is detected only after months of equilibration. In order to enhance the effect of the TAG on the phase transitions in the GMO/triglyceride/water systems, temperature and electrolytes effects were examined. In the presence of short and medium chain triglycerides, increasing temperature caused a transition from lamellar or hexagonal to L(2) phase (highest CPP value). However, in the presence of long chain TAGs, increasing temperature to ca. 40 degrees C caused a formation of H(II) mesophase. In addition, it was found that in tricaprylin/GMO/water systems, the increase in temperature caused a decrease in the lattice parameter. The effect of NaCl on the H(II) mesophase revealed interesting results. At low concentration of tricaprylin (5 wt%), the addition of only 0.1 wt% of NaCl was sufficient to cause the formation of well-defined H(II) mesophase, while further addition of electrolyte increased the hexagonal lattice parameters. At higher TAGs concentrations (10 wt%), addition of electrolyte resulted in the formation of H(II) with modifications of the lattice parameter. All the examined effects were more pronounced with increasing water content.


Asunto(s)
Glicéridos/metabolismo , Transición de Fase , Triglicéridos/metabolismo , Agua/metabolismo , Caprilatos/metabolismo , Microscopía de Polarización , Cloruro de Sodio/metabolismo , Triacetina/metabolismo
7.
J Colloid Interface Sci ; 364(2): 379-87, 2011 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-21958442

RESUMEN

The potential of reverse hexagonal mesophases based on monoolein (GMO) and glycerol (as cosolvent) to facilitate the solubilization of proteins, such as insulin was explored. H(II) mesophases composed of GMO/decane/water were compared to GMO/decane/glycerol/water and GMO/phosphatidylcholine (PC)/decane/glycerol/water systems. The stability of insulin was tested, applying external physical modifications such as low pH and heat treatment (up to 70°C), in which insulin is known to form ordered amyloid-like aggregates (that are associated with several neurodegenerative diseases) with a characteristic cross ß-pleated sheet structure. The impact of insulin confinement within these carriers on its stability, unfolding, and aggregation pathways was studied by combining SAXS, FTIR, and AFM techniques. These techniques provided a better insight into the molecular level of the "component interplay" in solubilizing and stabilizing insulin and its conformational modifications that dictate its final aggregate morphology. PC enlarged the water channels while glycerol shrank them, yet both facilitated insulin solubilization within the channels. The presence of glycerol within the mesophase water channels led to the formation of stronger hydrogen bonds with the hosting medium that enhanced the thermal stability of the protein and remarkably affected the unfolding process even after heat treatment (at 70°C for 60 min).


Asunto(s)
Glicerol/química , Insulina/química , Fosfatidilcolinas/química , Microscopía de Fuerza Atómica , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier
8.
Langmuir ; 23(7): 3637-45, 2007 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-17328564

RESUMEN

In this research, we studied the factors that control formation of GMO/tricaprylin/water hexosomes and affect their inner structure. As a stabilizer of the soft particles dispersed in the aqueous phase, we used the hydrophilic nonionic triblock polymer Pluronic 127. We demonstrate how properties of the hexosomes, such as size, structure, and stability, can be tuned by their internal composition, polymer concentration, and processing conditions. The morphology and inner structure of the hexosomes were characterized by small-angle X-ray scattering, cryo-transmission electron microscope, and dynamic light scattering. The physical stability (to creaming, aggregation, and coalescence) of the hexosomes was further examined by the LUMiFuge technique. Two competing processes are presumed to take place during the formation of hexosomes: penetration of water from the continuous phase during dispersion, resulting in enhanced hydration of the head groups, and incorporation of the polymer chains into the hexosome structure while providing a stabilizing surface coating for the dispersed particles. Hydration is an essential stage in lyotropic liquid crystal (LLC) formation. The polymer, on the other hand, dehydrates the lipid heads, thereby introducing disorder into the LLC and reducing the domain size. Yet, a critical minimum polymer concentration is necessary in order to form stable nanosized hexosomes. These competing effects require the attention of those preparing hexosomes. The competition between these two processes can be controlled. At relatively high polymer concentrations (1-1.6 wt % of the total formulation of the soft particles), the hydration process seems to occur more rapidly than polymer adsorption. As a result, smaller and more stable soft particles with high symmetry were formed. On the other hand, when the polymer concentration is fixed at lower levels (<1.0 wt %), the homogenization process encourages only partial polymer adsorption during the dispersion process. This adsorption is insufficient; hence, maximum hydration of the surfactant head group is reached prior to obtaining full adsorption, resulting in the formation of less ordered hexosomes of larger size and lower stability.


Asunto(s)
Nanopartículas/química , Poloxámero/química , Agua/química , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA