Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cytokine ; 112: 87-94, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30017389

RESUMEN

The disease leprosy is caused by Mycobacterium leprae. The disease displays a spectrum of clinical manifestations relating to the stage of the infection and the pathogen-specific immune response. The most frequent M. leprae-specific hypersensitivity reactions are erythema nodosum leprosum (ENL) and type-1 (reversal) reaction (T1R). Omega-3 and omega-6 fatty acid-derived lipid mediators are involved in the regulation of these M. leprae-specific inflammatory and immune responses. Studies on lipid mediators showed their presence during different manifestations of leprosy-before and after multidrug therapy (MDT) and during T1R. This review aims to compare the lipid mediators at different stages of the disease. This review also presents new data on the significance of lipid mediators (cysteinyl leukotrienes and leukotriene B4, prostaglandin E2 and D2, lipoxin A4 and resolvin D1) on ENL.


Asunto(s)
Ácidos Grasos Omega-3/sangre , Ácidos Grasos Omega-6/sangre , Lepra/sangre , Animales , Quimioterapia Combinada , Eritema Nudoso/sangre , Eritema Nudoso/tratamiento farmacológico , Humanos , Leprostáticos/farmacología , Lepra/tratamiento farmacológico , Mycobacterium leprae/efectos de los fármacos
2.
J Biol Chem ; 291(41): 21375-21387, 2016 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-27555322

RESUMEN

Mycobacterium leprae, the intracellular etiological agent of leprosy, infects Schwann promoting irreversible physical disabilities and deformities. These cells are responsible for myelination and maintenance of axonal energy metabolism through export of metabolites, such as lactate and pyruvate. In the present work, we observed that infected Schwann cells increase glucose uptake with a concomitant increase in glucose-6-phosphate dehydrogenase (G6PDH) activity, the key enzyme of the oxidative pentose pathway. We also observed a mitochondria shutdown in infected cells and mitochondrial swelling in pure neural leprosy nerves. The classic Warburg effect described in macrophages infected by Mycobacterium avium was not observed in our model, which presented a drastic reduction in lactate generation and release by infected Schwann cells. This effect was followed by a decrease in lactate dehydrogenase isoform M (LDH-M) activity and an increase in cellular protection against hydrogen peroxide insult in a pentose phosphate pathway and GSH-dependent manner. M. leprae infection success was also dependent of the glutathione antioxidant system and its main reducing power source, the pentose pathway, as demonstrated by a 50 and 70% drop in intracellular viability after treatment with the GSH synthesis inhibitor buthionine sulfoximine, and aminonicotinamide (6-ANAM), an inhibitor of G6PDH 6-ANAM, respectively. We concluded that M. leprae could modulate host cell glucose metabolism to increase the cellular reducing power generation, facilitating glutathione regeneration and consequently free-radical control. The impact of this regulation in leprosy neuropathy is discussed.


Asunto(s)
Metabolismo Energético , Glucosa/metabolismo , Glucosafosfato Deshidrogenasa/metabolismo , Ácido Láctico/metabolismo , Lepra Tuberculoide/metabolismo , Mycobacterium leprae/metabolismo , Células de Schwann/metabolismo , Línea Celular , Humanos , Metionina/análogos & derivados , Metionina/farmacología , Mitocondrias/metabolismo , Células de Schwann/microbiología
4.
Mem Inst Oswaldo Cruz ; 104(8): 1132-8, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20140374

RESUMEN

Members of the high temperature requirement A (HtrA) family of chaperone proteases have been shown to play a role in bacterial pathogenesis. In a recent report, we demonstrated that the gene ML0176, which codes for a predicted HtrA-like protease, a gene conserved in other species of mycobacteria, is transcribed by Mycobacterium leprae in human leprosy lesions. In the present study, the recombinant ML0176 protein was produced and its enzymatic properties investigated. M. lepraerecombinant ML0176 was able to hydrolyse a variety of synthetic and natural peptides. Similar to other HtrA proteins, this enzyme displayed maximum proteolytic activity at temperatures above 40 degrees C and was completely inactivated by aprotinin, a protease inhibitor with high selectivity for serine proteases. Finally, analysis of M. leprae ML0176 specificity suggested a broader cleavage preference than that of previously described HtrAs homologues. In summary, we have identified an HtrA-like protease in M. lepraethat may constitute a potential new target for the development of novel prophylactic and/or therapeutic strategies against mycobacterial infections.


Asunto(s)
Mycobacterium leprae/enzimología , Serina Endopeptidasas/biosíntesis , Secuencia de Bases , Clonación Molecular , Regulación Bacteriana de la Expresión Génica/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Humanos , Datos de Secuencia Molecular , Mycobacterium leprae/genética , Espectroscopía Infrarroja por Transformada de Fourier
5.
Microb Pathog ; 43(5-6): 249-54, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17624714

RESUMEN

Proteases are commonly involved in bacterial pathogenesis and their inhibition has represented a successful therapeutic approach to treat infectious diseases. However, there is little information on the role of proteases in the pathogenesis of Mycobacteria. Five of these genes, three coding for putative secreted proteases, were selected in the present study to investigate their expression in Mycobacterium leprae isolated from skin biopsies of multibacillary leprosy patients. Via nested-PCR, it was demonstrated that mycP1 or ML0041, htrA2 or ML0176, htrA4 or ML2659, gcp or ML0379 and clpC or ML0235 are transcribed in vivo during the course of human infection. Moreover, the expression of Gcp in leprosy lesions was further confirmed by immunohistochemistry using a specific hyperimmune serum. This observation reinforces the potential role of mycobacterial proteases in the context of leprosy pathogenesis.


Asunto(s)
Lepra/enzimología , Mycobacterium leprae/enzimología , Péptido Hidrolasas/metabolismo , Animales , Anticuerpos Antibacterianos , Antígenos Bacterianos/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Humanos , Lepra/metabolismo , Ratones , Ratones Endogámicos BALB C , Mycobacterium leprae/genética , Mycobacterium leprae/patogenicidad , Piel/microbiología
6.
Mem. Inst. Oswaldo Cruz ; 104(8): 1132-1138, Dec. 2009. tab, ilus
Artículo en Inglés | LILACS | ID: lil-538173

RESUMEN

Members of the high temperature requirement A (HtrA) family of chaperone proteases have been shown to play a role in bacterial pathogenesis. In a recent report, we demonstrated that the gene ML0176, which codes for a predicted HtrA-like protease, a gene conserved in other species of mycobacteria, is transcribed by Mycobacterium leprae in human leprosy lesions. In the present study, the recombinant ML0176 protein was produced and its enzymatic properties investigated. M. lepraerecombinant ML0176 was able to hydrolyse a variety of synthetic and natural peptides. Similar to other HtrA proteins, this enzyme displayed maximum proteolytic activity at temperatures above 40°C and was completely inactivated by aprotinin, a protease inhibitor with high selectivity for serine proteases. Finally, analysis of M. leprae ML0176 specificity suggested a broader cleavage preference than that of previously described HtrAs homologues. In summary, we have identified an HtrA-like protease in M. lepraethat may constitute a potential new target for the development of novel prophylactic and/or therapeutic strategies against mycobacterial infections.


Asunto(s)
Humanos , Mycobacterium leprae/enzimología , Serina Endopeptidasas/biosíntesis , Secuencia de Bases , Clonación Molecular , Regulación Bacteriana de la Expresión Génica/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Datos de Secuencia Molecular , Mycobacterium leprae/genética , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA