Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Sensors (Basel) ; 21(14)2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34300384

RESUMEN

Distribution system state estimation (DSSE) plays a significant role for the system operation management and control. Due to the multiple uncertainties caused by the non-Gaussian measurement noise, inaccurate line parameters, stochastic power outputs of distributed generations (DG), and plug-in electric vehicles (EV) in distribution systems, the existing interval state estimation (ISE) approaches for DSSE provide fairly conservative estimation results. In this paper, a new ISE model is proposed for distribution systems where the multiple uncertainties mentioned above are well considered and accurately established. Moreover, a modified Krawczyk-operator (MKO) in conjunction with interval constraint-propagation (ICP) algorithm is proposed to solve the ISE problem and efficiently provides better estimation results with less conservativeness. Simulation results carried out on the IEEE 33-bus, 69-bus, and 123-bus distribution systems show that the our proposed algorithm can provide tighter upper and lower bounds of state estimation results than the existing approaches such as the ICP, Krawczyk-Moore ICP(KM-ICP), Hansen, and MKO.

2.
Nanotechnology ; 27(19): 195402, 2016 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-27040504

RESUMEN

A novel dielectric nanocomposite containing a high permittivity polymer, cyanoethylated cellulose (CRS) and TiO2 nanoparticles was successfully prepared with different weight percentages (10%, 20% and 30%) of TiO2. The intermolecular interactions and morphology within the polymer nanocomposites were analysed. TiO2/CRS nanofilms on SiO2/Si wafers were used to form metal-insulator-metal type capacitors. Capacitances and loss factors in the frequency range of 1 kHz-1 MHz were measured. At 1 kHz CRS-TiO2 nanocomposites exhibited ultra high dielectric constants of 118, 176 and 207 for nanocomposites with 10%, 20% and 30% weight of TiO2 respectively, significantly higher than reported values of pure CRS (21), TiO2 (41) and other dielectric polymer-TiO2 nanocomposite films. Furthermore, all three CRS-TiO2 nanocomposites show a loss factor <0.3 at 1 kHz and low leakage current densities (10(-6)-10(-7) A cm(-2)). Leakage was studied using conductive atomic force microscopy and it was observed that the leakage is associated with TiO2 nanoparticles embedded in the CRS polymer matrix. A new class of ultra high dielectric constant hybrids using nanoscale inorganic dielectrics dispersed in a high permittivity polymer suitable for energy management applications is reported.

3.
Small ; 11(24): 2929-37, 2015 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-25703342

RESUMEN

Energy scavenging has become a fundamental part of ubiquitous sensor networks. Of all the scavenging technologies, solar has the highest power density available. However, the energy source is erratic. Integrating energy conversion and storage devices is a viable route to obtain self-powered electronic systems which have long-term maintenance-free operation. In this work, we demonstrate an integrated-power-sheet, consisting of a string of series connected organic photovoltaic cells (OPCs) and graphene supercapacitors on a single substrate, using graphene as a common platform. This results in lighter and more flexible power packs. Graphene is used in different forms and qualities for different functions. Chemical vapor deposition grown high quality graphene is used as a transparent conductor, while solution exfoliated graphene pastes are used as supercapacitor electrodes. Solution-based coating techniques are used to deposit the separate components onto a single substrate, making the process compatible with roll-to-roll manufacture. Eight series connected OPCs based on poly(3-hexylthiophene)(P3HT):phenyl-C61-butyric acid methyl ester (PC60 BM) bulk-heterojunction cells with aluminum electrodes, resulting in a ≈5 V open-circuit voltage, provide the energy harvesting capability. Supercapacitors based on graphene ink with ≈2.5 mF cm(-2) capacitance provide the energy storage capability. The integrated-power-sheet with photovoltaic (PV) energy harvesting and storage functions had a mass of 0.35 g plus the substrate.

4.
Phys Rev Lett ; 114(14): 147701, 2015 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-25910163

RESUMEN

We report our observation that radiation from a system of accelerating charges is possible only when there is explicit breaking of symmetry in the electric field in space within the spatial configuration of the radiating system. Under symmetry breaking, current within an enclosed area around the radiating structure is not conserved at a certain instant of time resulting in radiation in free space. Electromagnetic radiation from dielectric and piezoelectric material based resonators are discussed in this context. Finally, it is argued that symmetry of a resonator of any form can be explicitly broken to create a radiating antenna.

5.
Microsyst Nanoeng ; 10: 80, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38911342

RESUMEN

With the rapid development of the Internet of Things (IoTs), wearable sensors are playing an increasingly important role in daily monitoring of personal health and wellness. The signal-to-noise-ratio has become the most critical performance factor to consider. To enhance it, on the one hand, good sensing materials/devices have been employed; on the other hand, signal amplification and noise reduction circuits have been used. However, most of these devices and circuits work in an active sampling mode, requiring frequent data acquisition and hence, entailing high-power consumption. In this scenario, a flexible and wearable event-triggered sensor with embedded signal amplification without an external power supply is of great interest. Here, we report a flexible two-terminal piezotronic n-p-n bipolar junction transistor (PBJT) that acts as an autonomous and highly sensitive, current- and/or voltage-mediated pressure sensor. The PBJT is formed by two back-to-back piezotronic diodes which are defined as emitter-base and collector-base diodes. Upon force exertion on the emitter side, as a result of the piezoelectric effect, the emitter-base diode is forward biased while the collector-base diode is reverse biased. Due to the inherent BJT amplification effect, the PBJT achieves record-high sensitivities of 139.7 kPa-1 (current-based) and 88.66 kPa-1 (voltage-based) in sensing mode. The PBJT also has a fast response time of <110 ms under exertion of dynamic stimuli ranging from a flying butterfly to a gentle finger touch. Therefore, the PBJT advances the state of the art not only in terms of sensitivity but also in regard to being self-driven and autonomous, making it promising for pressure sensing and other IoT applications.

6.
Nanoscale ; 15(4): 1824-1834, 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36602164

RESUMEN

The interface between the polymer and nanoparticle has a vital role in determining the overall dielectric properties of a dielectric polymer nanocomposite. In this study, a novel dielectric nanocomposite containing a high permittivity polymer, cyanoethylated cellulose (CRS) and TiO2 nanoparticles surface modified by hydrogen plasma treatments was successfully prepared with different weight percentages (10%, 20% and 30%) of hydrogenated TiO2. Internal structure of H plasma treated TiO2 nanoparticles (H-TiO2) and the intermolecular interactions and morphology within the polymer nanocomposites were analysed. H-TiO2/CRS thin films on SiO2/Si wafers were used to form metal-insulator-metal (MIM) type capacitors. Capacitances and loss factors in the frequency range of 1 kHz to 1 MHz were measured. At 1 kHz H-TiO2/CRS nanocomposites exhibited ultra-high dielectric constants of 80, 118 and 131 for nanocomposites with 10%, 20% and 30% weight of hydrogenated TiO2 respectively, significantly higher than values of pure CRS (21) and TiO2 (41). Furthermore, all three H-TiO2 /CRS nanocomposites show a loss factor <0.3 at 1 kHz and low leakage current densities (10-6 A cm-2-10-7 A cm-2). Leakage was studied using conductive atomic force microscopy (C-AFM) and it was observed that the leakage is associated with H-TiO2 nanoparticles embedded in the CRS polymer matrix. Although, modified interface slightly reduces energy densities compared to pristine TiO2/CRS system, the capacitance values for H-TiO2/CRS-in the voltage range of -2 V to 2 V are very stable. Whilst H-TiO2/CRS possesses ultra-high dielectric constants (>100), this study reveals that the polymer nanoparticle interface has a potential influence on dielectric behaviour of the composite.

7.
Sci Adv ; 9(16): eadf4049, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37083532

RESUMEN

An integrated textile electronic system is reported here, enabling a truly free form factor system via textile manufacturing integration of fiber-based electronic components. Intelligent and smart systems require freedom of form factor, unrestricted design, and unlimited scale. Initial attempts to develop conductive fibers and textile electronics failed to achieve reliable integration and performance required for industrial-scale manufacturing of technical textiles by standard weaving technologies. Here, we present a textile electronic system with functional one-dimensional devices, including fiber photodetectors (as an input device), fiber supercapacitors (as an energy storage device), fiber field-effect transistors (as an electronic driving device), and fiber quantum dot light-emitting diodes (as an output device). As a proof of concept applicable to smart homes, a textile electronic system composed of multiple functional fiber components is demonstrated, enabling luminance modulation and letter indication depending on sunlight intensity.

8.
Opt Lett ; 37(2): 235-7, 2012 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-22854478

RESUMEN

Multiple color states have been realized in single unit cell using double electrochromic (EC) reaction. The precise control of bistability in EC compounds which can maintain several colors on the two separated electrodes allows this new type of pixel to be realized. The specific electrical driving gives a way to maintain both sides in the reduced EC states and this colors overlapping in the vertical view direction can achieve the black state. The four color states (G, B, W, BK) in one cell/pixel can make a valuable progress to achieve a high quality color devices such like electronic paper, outdoor billboard, smart window and flexible display using external light source.

9.
Nanotechnology ; 23(19): 194002, 2012 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-22538769

RESUMEN

As a result of their morphology, nanowires bring new properties and the promise of performance for a range of electronic devices. This review looks into the properties of nanowires and the multiple ways in which they have been exploited for energy generation, from photovoltaics to piezoelectric generators.

10.
Nanotechnology ; 23(16): 165702, 2012 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-22460805

RESUMEN

One-dimensional ferroelectric nanostructures, carbon nanotubes (CNT) and CNT-inorganic oxides have recently been studied due to their potential applications for microelectronics. Here, we report coating of a registered array of aligned multi-wall carbon nanotubes (MWCNT) grown on silicon substrates by functional ferroelectric Pb(Zr,Ti)O3 (PZT) which produces structures suitable for commercial prototype memories. Microstructural analysis reveals the crystalline nature of PZT with small nanocrystals aligned in different directions. First-order Raman modes of MWCNT and PZT/MWCNT/n-Si show the high structural quality of CNT before and after PZT deposition at elevated temperature. PZT exists mostly in the monoclinic Cc/Cm phase, which is the origin of the high piezoelectric response in the system. Low-loss square piezoelectric hysteresis obtained for the 3D bottom-up structure confirms the switchability of the device. Current-voltage mapping of the device by conducting atomic force microscopy (c-AFM) indicates very low transient current. Fabrication and functional properties of these hybrid ferroelectric-carbon nanotubes is the first step towards miniaturization for future nanotechnology sensors, actuators, transducers and memory devices.


Asunto(s)
Equipos de Almacenamiento de Computador , Plomo/química , Sistemas Microelectromecánicos/instrumentación , Nanotecnología/instrumentación , Nanotubos de Carbono/química , Procesamiento de Señales Asistido por Computador/instrumentación , Titanio/química , Circonio/química , Conductividad Eléctrica , Diseño de Equipo , Análisis de Falla de Equipo , Nanotubos de Carbono/ultraestructura
11.
Nanotechnology ; 23(2): 025501, 2012 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-22166842

RESUMEN

In this paper, we present experimental results describing enhanced readout of the vibratory response of a doubly clamped zinc oxide (ZnO) nanowire employing a purely electrical actuation and detection scheme. The measured response suggests that the piezoelectric and semiconducting properties of ZnO effectively enhance the motional current for electromechanical transduction. For a doubly clamped ZnO nanowire resonator with radius ~10 nm and length ~1.91 µm, a resonant frequency around 21.4 MHz is observed with a quality factor (Q) of ~358 in vacuum. A comparison with the Q obtained in air (~242) shows that these nano-scale devices may be operated in fluid as viscous damping is less significant at these length scales. Additionally, the suspended nanowire bridges show field effect transistor (FET) characteristics when the underlying silicon substrate is used as a gate electrode or using a lithographically patterned in-plane gate electrode. Moreover, the Young's modulus of ZnO nanowires is extracted from a static bending test performed on a nanowire cantilever using an AFM and the value is compared to that obtained from resonant frequency measurements of electrically addressed clamped­clamped beam nanowire resonators.

12.
Appl Opt ; 51(4): 422-8, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22307111

RESUMEN

This paper presents experimental optimization of number and geometry of nanotube electrodes in a liquid crystal media from wavefront aberrations for realizing nanophotonic devices. The refractive-index gradient profiles from different nanotube geometries--arrays of one, three, four, and five--were studied along with wavefront aberrations using Zernike polynomials. The optimizations help the device to make application in the areas of voltage reconfigurable microlens arrays, high-resolution displays, wavefront sensors, holograms, and phase modulators.

13.
Nat Commun ; 13(1): 4189, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35922408

RESUMEN

We propose a computational design framework to design the architecture of a white lighting system having multiple pixelated patterns of electric-field-driven quantum dot light-emitting diodes. The quantum dot of the white lighting system has been optimised by a system-level combinatorial colour optimisation process with the Nelder-Mead algorithm used for machine learning. The layout of quantum dot patterns is designed precisely using rigorous device-level charge transport simulation with an electric-field dependent charge injection model. A theoretical maximum of 97% colour rendering index has been achieved with red, green, cyan, and blue quantum dot light-emitting diodes as primary colours. The white lighting system has been fabricated using the transfer printing technique to validate the computational design framework. It exhibits excellent lighting performance of 92% colour rendering index and wide colour temperature variation from 1612 K to 8903 K with only the four pixelated quantum dots as primary.

14.
Nat Commun ; 13(1): 814, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35145096

RESUMEN

Smart textiles consist of discrete devices fabricated from-or incorporated onto-fibres. Despite the tremendous progress in smart textiles for lighting/display applications, a large scale approach for a smart display system with integrated multifunctional devices in traditional textile platforms has yet to be demonstrated. Here we report the realisation of a fully operational 46-inch smart textile lighting/display system consisting of RGB fibrous LEDs coupled with multifunctional fibre devices that are capable of wireless power transmission, touch sensing, photodetection, environmental/biosignal monitoring, and energy storage. The smart textile display system exhibits full freedom of form factors, including flexibility, bendability, and rollability as a vivid RGB lighting/grey-level-controlled full colour display apparatus with embedded fibre devices that are configured to provide external stimuli detection. Our systematic design and integration strategies are transformational and provide the foundation for realising highly functional smart lighting/display textiles over large area for revolutionary applications on smart homes and internet of things (IoT).

15.
Nature ; 437(7061): 968, 2005 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-16222290

RESUMEN

To communicate, spacecraft and satellites rely on microwave devices, which at present are based on relatively inefficient thermionic electron sources that require heating and cannot be switched on instantaneously. Here we describe a microwave diode that uses a cold-cathode electron source consisting of carbon nanotubes and that operates at high frequency and at high current densities. Because it weighs little, responds instantaneously and has no need of heating, this miniaturized electron source should prove valuable for microwave devices used in telecommunications.

16.
Phys Rev Lett ; 115(11): 119702, 2015 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-26406863
17.
Nanotechnology ; 21(43): 435702, 2010 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-20876981

RESUMEN

Polyaniline (PANI) nanobrushes were synthesized by template-free electrochemical galvanostatic methods. When the same method was applied to the carbon nanohorn (CNH) solution containing aniline monomers, a hybrid nanostructure containing PANI and CNHs was enabled after electropolymerization. This is the first report on the template-free method to make PANI nanobrushes and homogeneous hybrid soft matter (PANI) with carbon nanoparticles. Raman spectroscopy was used to analyze the interaction between CNH and PANI. Electrochemical nanofabrication offers simplicity and good control when used to make electronic devices. Both of these materials were applied in supercapacitors and an improvement capacitive current by using the hybrid material was observed.

18.
J Pharm Sci ; 109(2): 1130-1135, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31568775

RESUMEN

A sustained-release carrier system for the drug cephalexin (CEF) using functionalized graphene oxide is reported. PEGylation of GO (GO-PEG) and successful loading of CEF into PEGylated graphene oxide (GO-PEG-CEF) nanoconjugate are confirmed by Fourier transform infrared spectroscopy, Raman spectroscopy, and thermogravimetric analysis. Encapsulation efficiency of 69% and a loading capacity of 19% are obtained with the optimized formulation of GO-PEG-CEF. In vitro CEF release profiles show an initial burst release followed by a more sustained release over a 96 h period with cumulative release of 80%. The half maximal inhibitory concentration (IC50) values have both dose- and time-dependent antibacterial activity for GO-PEG-CEF against both gram-positive and gram-negative bacteria while pure CEF showed only dose-dependent antibacterial activity. The minimum inhibitory concentration values of GO-PEG-CEF are 7.8 and 3.9 µg/mL against S. aureus and B. cereus, respectively, while it is 10 µg/mL with pure CEF against both gram-positive bacteria. This confirms the enhanced antibacterial activity of GO-PEG-CEF over pure CEF against gram-positive bacteria. These findings therefore show GO-PEG-CEF is promising as a sustained-release nanoantibiotic system for effective treatment against S. aureus and B. cereus infections.


Asunto(s)
Grafito , Nanocompuestos , Antibacterianos/farmacología , Cefalexina , Preparaciones de Acción Retardada , Bacterias Gramnegativas , Bacterias Grampositivas , Staphylococcus aureus
19.
RSC Adv ; 9(41): 23666-23677, 2019 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35530589

RESUMEN

Contemporary studies of self-healing polymer composites are based on microcapsules synthesized using synthetic and toxic polymers, biopolymers, etc. via methods such as in situ polymerization, electrospraying, and air atomization. Herein, we synthesized a healing agent, epoxy (EPX) encapsulated calcium carbonate (CC) microcapsules, which was used to prepare self-healing EPX composites as a protective coating for metals. The CC microcapsules were synthesized using two facile methods, namely, the soft-template method (STM) and the in situ emulsion method (EM). Microcapsules prepared using the STM (ST-CC) were synthesized using sodium dodecyl sulphate (SDS) surfactant micelles as the soft-template, while the microcapsules prepared using the EM (EM-CC) were synthesized in an oil-in-water (O/W) in situ emulsion. These prepared CC microcapsules were characterized using light microscopy (LMC), field emission scanning electron microscopy (FE-SEM), fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), and thermogravimetric analysis (TGA). The synthesized ST-CC microcapsules were spherical in shape, with an average diameter of 2.5 µm and an average shell wall thickness of 650 nm, while EM-CC microcapsules had a near-spherical shape with an average diameter of 3.4 µm and an average shell wall thickness of 880 nm. The ST-CC capsules exhibited flake-like rough surfaces while EM-CC capsules showed smooth bulgy surfaces. The loading capacity of ST-CC and EM-CC microcapsules were estimated using TGA and found to be 11% and 36%, respectively. The FTIR and NMR spectra confirmed the EPX encapsulation and the unreactive nature of the loaded EPX with the inner walls of CC microcapsules. The synthesized CC microcapsules were further incorporated into an EPX matrix to prepare composite coatings with 10 (w/w%), 20 (w/w%), and 50 (w/w%) capsule loadings. The prepared EPX composite coatings were scratched and observed using FE-SEM and LMC to evaluate the release of encapsulated EPX inside the CC capsules, which is analogous to the healing behaviour. Moreover, EPX composite coatings with 20 (w/w%) and 50 (w/w%) of ST-CC showed better healing performances. Thus, it was observed that ST-CC microcapsules outperformed EM-CC. Additionally, the EPX/CC coatings showed remarkable self-healing properties by closing the gaps of the scratch surfaces. Thus, these formaldehyde-free, biocompatible, biodegradable, and non-toxic CC based EPX composite coatings hold great potential to be used as a protective coating for metal substrates. Primary results detected significant corrosion retardancy due to the self-healing coatings under an accelerated corrosion process, which was performed with a salt spray test.

20.
Nanoscale ; 10(22): 10683-10690, 2018 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-29845175

RESUMEN

The optical bandgap properties of vertically-aligned carbon nanotube (VACNT) arrays were probed through their interaction with white light, with the light reflected from the rotating arrays measured with a spectrometer. The precise deterministic control over the structure of vertically-aligned carbon nanotube arrays through electron beam lithography and well-controlled growth conditions brings with it the ability to produce exotic photonic crystals over a relatively large area. The characterisation of the behaviour of these materials in the presence of light is a necessary first step toward application. Relatively large area array structures of high-quality VACNTs were fabricated in square, hexagonal, circular and pseudorandom patterned arrays with length scales on the order of those of visible light for the purpose of investigating how they may be used to manipulate an impinging light beam. In order to investigate the optical properties of these arrays a set of measurement apparatus was designed which allowed the accurate measurement of their optical bandgap characteristics. The patterned samples were rotated under the illuminating white light beam, revealing interesting optical bandgap results caused by the changing patterns and relative positions of the scattering elements (VACNTs).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA