RESUMEN
Li(+) is the most effective drug used to treat bipolar disorder; however, its exact mechanism of action has yet to be elucidated. One hypothesis is that Li(+) competes with Mg2+ for the Mg2+ binding sites on guanine-nucleotide binding proteins (G-proteins). Using 7Li T1 relaxation measurements and fluorescence spectroscopy with the Mg2+ fluorophore furaptra, we detected Li(+)/Mg(2+) competition in three preparations: the purified G-protein transducin (Gt), stripped rod outer segment membranes (SROS), and SROS with purified Gt reattached (ROS-T). When purified ROS-T, SROS or transducin were titrated with Li+ in the presence of fixed amounts of Mg(2+), the apparent Li(+) binding constant decreased due to Li(+)/Mg(2+) competition. Whereas for SROS the competition mechanism was monophasic, for G(t), the competition was biphasic, suggesting that in G(t), Li(+)/Mg(2+) competition occurred with different affinities for Mg(2+) in two types of Mg(2+) binding sites. Moreover, as [Li(+)] increased, the fluorescence excitation spectra of both ROS-T and G(t) were blue shifted, indicating an increase in free [Mg(2+)] compatible with Li(+) displacement of Mg(2+) from two low affinity Mg(2+) binding sites of G(t). G(t) release from ROS-T membrane was also inhibited by Li(+) addition. In summary, we found evidence of Li(+)/Mg(2+) competition in G(t)-containing preparations.