Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chemistry ; : e202401428, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717583

RESUMEN

Sn3P8N16 combines the structural versatility of nitridophosphates and Sn within one compound. It was synthesized as dark gray powder in a high-pressure high-temperature reaction at 800 °C and 6 GPa from Sn3N4 and P3N5. The crystal structure was elucidated from single-crystal diffraction data (space group C2/m (no. 12), a=12.9664(4), b=10.7886(4), c=4.8238(2) Å, ß=109.624(1)°) and shows a 3D-network of PN4 tetrahedra, incorporating Sn in oxidation states +II and +IV. The Sn cations are located within eight-membered rings of vertex-sharing PN4 tetrahedra, stacked along the [001] direction. A combination of solid-state nuclear magnetic resonance spectroscopy, 119Sn Mössbauer spectroscopy and density functional theory calculations was used to confirm the mixed oxidation of Sn. Temperature-dependent powder X-ray diffraction measurements reveal a low thermal expansion of 3.6 ppm/K up to 750 °C, beyond which Sn3P8N16 starts to decompose.

2.
Inorg Chem ; 63(7): 3535-3543, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38324917

RESUMEN

High-pressure, high-temperature (HP/HT) syntheses are essential for modern high-performance materials. Phosphorus nitride, nitridophosphate, and more generally nitride syntheses benefit greatly from HP/HT conditions. In this contribution, we present the first systematic in situ investigation of a nitridophosphate HP/HT synthesis using the reaction of zinc nitride Zn3N2 and phosphorus(V) nitride P3N5 to the nitride semiconductor Zn2PN3 as a case study. At a pressure of 8 GPa and temperatures up to 1300 °C, the reaction was monitored by energy-dispersive powder X-ray diffraction (ED-PXRD) in a large-volume press at beamline P61B at DESY. The experiments investigate the general behavior of the starting materials under extreme conditions and give insight into the reaction. During cold compression and subsequent heating, the starting materials remain crystalline above their ambient-pressure decomposition points, until a sufficient minimum temperature is reached and the reaction starts. The reaction proceeds via ion diffusion at grain boundaries with an exponential decay in the reaction rate. Raising the temperature above the minimum required value quickly completes the reaction and initiates single-crystal growth. After cooling and decompression, which did not influence the resulting product, the recovered sample was analyzed by energy-dispersive X-ray (EDX) spectroscopy.

3.
Inorg Chem ; 63(18): 8502-8509, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38657029

RESUMEN

Nitridophosphates and nitridogermanates attract high interest in current research due to their structural versatility. Herein, the elastic properties of GeP2N4 were investigated by single-crystal X-ray diffraction (XRD) upon compression to 44.4(1) GPa in a diamond anvil cell. Its isothermal bulk modulus was determined to be 82(6) GPa. At 44.4(1) GPa, laser heating resulted in the formation of multiple crystalline phases, one of which was identified as unprecedented germanium nitridophosphate GePN3. Its structure was elucidated from single-crystal XRD data (C2/c (no. 15), a = 8.666(5), b = 8.076(4), c = 4.691(2) Å, ß = 101.00(7)°) and is built up from layers of GeN6 octahedra and PN4 tetrahedra. The GeN6 octahedra form double zigzag chains, while the PN4 tetrahedra are found in single zigzag chains. GePN3 can be recovered to ambient conditions with a unit cell volume increase of about 12%. It combines PV and GeIV in a condensed nitridic network for the first time.

4.
Angew Chem Int Ed Engl ; 63(7): e202318214, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38100520

RESUMEN

The elements hydrogen, carbon, and nitrogen are among the most abundant in the solar system. Still, little is known about the ternary compounds these elements can form under the high-pressure and high-temperature conditions found in the outer planets' interiors. These materials are also of significant research interest since they are predicted to feature many desirable properties such as high thermal conductivity and hardness due to strong covalent bonding networks. In this study, the high-pressure high-temperature reaction behavior of malononitrile H2 C(CN)2 , dicyandiamide (H2 N)2 C=NCN, and melamine (C3 N3 )(NH2 )3 was investigated in laser-heated diamond anvil cells. Two previously unknown compounds, namely α-C(NH)2 and ß-C(NH)2 , have been synthesized and found to have fully sp3 -hybridized carbon atoms. α-C(NH)2 crystallizes in a distorted ß-cristobalite structure, while ß-C(NH)2 is built from previously unknown imide-bridged 2,4,6,8,9,10-hexaazaadamantane units, which form two independent interpenetrating diamond-like networks. Their stability domains and compressibility were studied, for which supporting density functional theory calculations were performed.

5.
Angew Chem Int Ed Engl ; 62(24): e202303580, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37052069

RESUMEN

Layered silicates are a very versatile class of materials with high importance to humanity. The new nitridophosphates MP6 N11 (M=Al, In), synthesized from MCl3 , P3 N5 and NH4 N3 in a high-pressure high-temperature reaction at 1100 °C and 8 GPa, show a mica-like layer setup and feature rare nitrogen coordination motifs. The crystal structure of AlP6 N11 was elucidated from synchrotron single-crystal diffraction data (space group Cm (no. 8), a=4.9354(10), b=8.1608(16), c=9.0401(18) Å, ß=98.63(3)°), enabling Rietveld refinement of isotypic InP6 N11 . It is built up from layers of PN4 tetrahedra, PN5 trigonal bipyramids and MN6 octahedra. PN5 trigonal bipyramids have been reported only once and MN6 octahedra are sparsely found in the literature. AlP6 N11 was further characterized by energy-dispersive X-ray (EDX), IR and NMR spectroscopy. Despite the vast amount of known layered silicates, there is no isostructural compound to MP6 N11 as yet.

6.
Angew Chem Int Ed Engl ; 62(3): e202215393, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36350660

RESUMEN

Owing to their widespread properties, nitridophosphates are of high interest in current research. Explorative high-pressure high-temperature investigations yielded various compounds with stoichiometry MP2 N4 (M=Be, Ca, Sr, Ba, Mn, Cd), which are discussed as ultra-hard or luminescent materials, when doped with Eu2+ . Herein, we report the first germanium nitridophosphate, GeP2 N4 , synthesized from Ge3 N4 and P3 N5 at 6 GPa and 800 °C. The structure was determined by single-crystal X-ray diffraction and further characterized by energy-dispersive X-ray spectroscopy, density functional theory calculations, IR and NMR spectroscopy. The highly condensed network of PN4 -tetrahedra shows a strong structural divergence to other MP2 N4 compounds, which is attributed to the stereochemical influence of the lone pair of Ge2+ . Thus, the formal exchange of alkaline earth cations with Ge2+ may open access to various compounds with literature-known stoichiometry, however, new structures and properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA