Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 155(6): 1351-64, 2013 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-24290359

RESUMEN

Parkinson's disease (PD) is characterized by loss of A9 dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). An association has been reported between PD and exposure to mitochondrial toxins, including environmental pesticides paraquat, maneb, and rotenone. Here, using a robust, patient-derived stem cell model of PD allowing comparison of A53T α-synuclein (α-syn) mutant cells and isogenic mutation-corrected controls, we identify mitochondrial toxin-induced perturbations in A53T α-syn A9 DA neurons (hNs). We report a pathway whereby basal and toxin-induced nitrosative/oxidative stress results in S-nitrosylation of transcription factor MEF2C in A53T hNs compared to corrected controls. This redox reaction inhibits the MEF2C-PGC1α transcriptional network, contributing to mitochondrial dysfunction and apoptotic cell death. Our data provide mechanistic insight into gene-environmental interaction (GxE) in the pathogenesis of PD. Furthermore, using small-molecule high-throughput screening, we identify the MEF2C-PGC1α pathway as a therapeutic target to combat PD.


Asunto(s)
Interacción Gen-Ambiente , Mitocondrias/efectos de los fármacos , Paraquat/toxicidad , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Factores de Transcripción MEF2 , Mutación/efectos de los fármacos , Neuronas/metabolismo , Estrés Oxidativo , Enfermedad de Parkinson/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Especies de Nitrógeno Reactivo/metabolismo , Sustancia Negra/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33833060

RESUMEN

Parkinson's disease is characterized by accumulation of α-synuclein (αSyn). Release of oligomeric/fibrillar αSyn from damaged neurons may potentiate neuronal death in part via microglial activation. Heretofore, it remained unknown if oligomeric/fibrillar αSyn could activate the nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome in human microglia and whether anti-αSyn antibodies could prevent this effect. Here, we show that αSyn activates the NLRP3 inflammasome in human induced pluripotent stem cell (hiPSC)-derived microglia (hiMG) via dual stimulation involving Toll-like receptor 2 (TLR2) engagement and mitochondrial damage. In vitro, hiMG can be activated by mutant (A53T) αSyn secreted from hiPSC-derived A9-dopaminergic neurons. Surprisingly, αSyn-antibody complexes enhanced rather than suppressed inflammasome-mediated interleukin-1ß (IL-1ß) secretion, indicating these complexes are neuroinflammatory in a human context. A further increase in inflammation was observed with addition of oligomerized amyloid-ß peptide (Aß) and its cognate antibody. In vivo, engraftment of hiMG with αSyn in humanized mouse brain resulted in caspase-1 activation and neurotoxicity, which was exacerbated by αSyn antibody. These findings may have important implications for antibody therapies aimed at depleting misfolded/aggregated proteins from the human brain, as they may paradoxically trigger inflammation in human microglia.


Asunto(s)
Inflamasomas/metabolismo , Microglía/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Enfermedad de Parkinson/inmunología , alfa-Sinucleína/inmunología , Péptidos beta-Amiloides/inmunología , Anticuerpos/inmunología , Diferenciación Celular , Células Cultivadas , Humanos , Células Madre Pluripotentes Inducidas/citología , Microglía/citología , Receptor Toll-Like 2/metabolismo , alfa-Sinucleína/genética
3.
Mol Psychiatry ; 26(10): 5751-5765, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-32467645

RESUMEN

Beginning at early stages, human Alzheimer's disease (AD) brains manifest hyperexcitability, contributing to subsequent extensive synapse loss, which has been linked to cognitive dysfunction. No current therapy for AD is disease-modifying. Part of the problem with AD drug discovery is that transgenic mouse models have been poor predictors of potential human treatment. While it is undoubtedly important to test drugs in these animal models, additional evidence for drug efficacy in a human context might improve our chances of success. Accordingly, in order to test drugs in a human context, we have developed a platform of physiological assays using patch-clamp electrophysiology, calcium imaging, and multielectrode array (MEA) experiments on human (h)iPSC-derived 2D cortical neuronal cultures and 3D cerebral organoids. We compare hiPSCs bearing familial AD mutations vs. their wild-type (WT) isogenic controls in order to characterize the aberrant electrical activity in such a human context. Here, we show that these AD neuronal cultures and organoids manifest increased spontaneous action potentials, slow oscillatory events (~1 Hz), and hypersynchronous network activity. Importantly, the dual-allosteric NMDAR antagonist NitroSynapsin, but not the FDA-approved drug memantine, abrogated this hyperactivity. We propose a novel model of synaptic plasticity in which aberrant neural networks are rebalanced by NitroSynapsin. We propose that hiPSC models may be useful for screening drugs to treat hyperexcitability and related synaptic damage in AD.


Asunto(s)
Enfermedad de Alzheimer , Células Madre Pluripotentes Inducidas , Potenciales de Acción , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Animales , Modelos Animales de Enfermedad , Ratones , Redes Neurales de la Computación , Neuronas
4.
Proc Natl Acad Sci U S A ; 113(47): E7564-E7571, 2016 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-27821734

RESUMEN

Recent studies have pointed to protein S-nitrosylation as a critical regulator of cellular redox homeostasis. For example, S-nitrosylation of peroxiredoxin-2 (Prx2), a peroxidase widely expressed in mammalian neurons, inhibits both enzymatic activity and protective function against oxidative stress. Here, using in vitro and in vivo approaches, we identify a role and reaction mechanism of the reductase sulfiredoxin (Srxn1) as an enzyme that denitrosylates (thus removing -SNO) from Prx2 in an ATP-dependent manner. Accordingly, by decreasing S-nitrosylated Prx2 (SNO-Prx2), overexpression of Srxn1 protects dopaminergic neural cells and human-induced pluripotent stem cell (hiPSC)-derived neurons from NO-induced hypersensitivity to oxidative stress. The pathophysiological relevance of this observation is suggested by our finding that SNO-Prx2 is dramatically increased in murine and human Parkinson's disease (PD) brains. Our findings therefore suggest that Srxn1 may represent a therapeutic target for neurodegenerative disorders such as PD that involve nitrosative/oxidative stress.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Enfermedad de Parkinson/metabolismo , Peroxirredoxinas/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Encéfalo/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/citología , Humanos , Hidrólisis , Células Madre Pluripotentes Inducidas/citología , Ratones , Óxido Nítrico/química , Estrés Oxidativo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/química , Peroxirredoxinas/química , Fosforilación
5.
Proc Natl Acad Sci U S A ; 110(27): E2518-27, 2013 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-23776240

RESUMEN

Synaptic loss is the cardinal feature linking neuropathology to cognitive decline in Alzheimer's disease (AD). However, the mechanism of synaptic damage remains incompletely understood. Here, using FRET-based glutamate sensor imaging, we show that amyloid-ß peptide (Aß) engages α7 nicotinic acetylcholine receptors to induce release of astrocytic glutamate, which in turn activates extrasynaptic NMDA receptors (eNMDARs) on neurons. In hippocampal autapses, this eNMDAR activity is followed by reduction in evoked and miniature excitatory postsynaptic currents (mEPSCs). Decreased mEPSC frequency may reflect early synaptic injury because of concurrent eNMDAR-mediated NO production, tau phosphorylation, and caspase-3 activation, each of which is implicated in spine loss. In hippocampal slices, oligomeric Aß induces eNMDAR-mediated synaptic depression. In AD-transgenic mice compared with wild type, whole-cell recordings revealed excessive tonic eNMDAR activity accompanied by eNMDAR-sensitive loss of mEPSCs. Importantly, the improved NMDAR antagonist NitroMemantine, which selectively inhibits extrasynaptic over physiological synaptic NMDAR activity, protects synapses from Aß-induced damage both in vitro and in vivo.


Asunto(s)
Péptidos beta-Amiloides/toxicidad , Astrocitos/metabolismo , Ácido Glutámico/metabolismo , Inhibición Neural/fisiología , Fragmentos de Péptidos/toxicidad , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/patología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Astrocitos/patología , Técnicas de Cocultivo , Femenino , Transferencia Resonante de Energía de Fluorescencia , Células HEK293 , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Masculino , Ratones , Ratones Transgénicos , Ratas , Receptores Nicotínicos/metabolismo , Sinapsis/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7
6.
J Neurochem ; 133(6): 898-908, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25692407

RESUMEN

Cyanide is a life-threatening, bioterrorist agent, preventing cellular respiration by inhibiting cytochrome c oxidase, resulting in cardiopulmonary failure, hypoxic brain injury, and death within minutes. However, even after treatment with various antidotes to protect cytochrome oxidase, cyanide intoxication in humans can induce a delayed-onset neurological syndrome that includes symptoms of Parkinsonism. Additional mechanisms are thought to underlie cyanide-induced neuronal damage, including generation of reactive oxygen species. This may account for the fact that antioxidants prevent some aspects of cyanide-induced neuronal damage. Here, as a potential preemptive countermeasure against a bioterrorist attack with cyanide, we tested the CNS protective effect of carnosic acid (CA), a pro-electrophilic compound found in the herb rosemary. CA crosses the blood-brain barrier to up-regulate endogenous antioxidant enzymes via activation of the Nrf2 transcriptional pathway. We demonstrate that CA exerts neuroprotective effects on cyanide-induced brain damage in cultured rodent and human-induced pluripotent stem cell-derived neurons in vitro, and in vivo in various brain areas of a non-Swiss albino mouse model of cyanide poisoning that simulates damage observed in the human brain. Cyanide, a potential bioterrorist agent, can produce a chronic delayed-onset neurological syndrome that includes symptoms of Parkinsonism. Here, cyanide poisoning treated with the proelectrophillic compound carnosic acid, results in reduced neuronal cell death in both in vitro and in vivo models through activation of the Nrf2/ARE transcriptional pathway. Carnosic acid is therefore a potential treatment for the toxic central nervous system (CNS) effects of cyanide poisoning. ARE, antioxidant responsive element; Nrf2 (NFE2L2, Nuclear factor (erythroid-derived 2)-like 2).


Asunto(s)
Abietanos/farmacología , Lesiones Encefálicas/prevención & control , Cianuros/toxicidad , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Extractos Vegetales/farmacología , Animales , Antioxidantes/farmacología , Bioterrorismo , Encéfalo/efectos de los fármacos , Modelos Animales de Enfermedad , Humanos , Etiquetado Corte-Fin in Situ , Masculino , Ratones , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/metabolismo , Ratas , Ratas Sprague-Dawley
7.
Neurobiol Dis ; 84: 99-108, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25796565

RESUMEN

Nitric oxide (NO) is a gasotransmitter that impacts fundamental aspects of neuronal function in large measure through S-nitrosylation, a redox reaction that occurs on regulatory cysteine thiol groups. For instance, S-nitrosylation regulates enzymatic activity of target proteins via inhibition of active site cysteine residues or via allosteric regulation of protein structure. During normal brain function, protein S-nitrosylation serves as an important cellular mechanism that modulates a diverse array of physiological processes, including transcriptional activity, synaptic plasticity, and neuronal survival. In contrast, emerging evidence suggests that aging and disease-linked environmental risk factors exacerbate nitrosative stress via excessive production of NO. Consequently, aberrant S-nitrosylation occurs and represents a common pathological feature that contributes to the onset and progression of multiple neurodegenerative disorders, including Alzheimer's, Parkinson's, and Huntington's diseases. In the current review, we highlight recent key findings on aberrant protein S-nitrosylation showing that this reaction triggers protein misfolding, mitochondrial dysfunction, transcriptional dysregulation, synaptic damage, and neuronal injury. Specifically, we discuss the pathological consequences of S-nitrosylated parkin, myocyte enhancer factor 2 (MEF2), dynamin-related protein 1 (Drp1), protein disulfide isomerase (PDI), X-linked inhibitor of apoptosis protein (XIAP), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) under neurodegenerative conditions. We also speculate that intervention to prevent these aberrant S-nitrosylation events may produce novel therapeutic agents to combat neurodegenerative diseases.


Asunto(s)
Enfermedades Neurodegenerativas/metabolismo , Proteína S/metabolismo , Animales , Humanos
8.
Proc Natl Acad Sci U S A ; 108(20): 8299-304, 2011 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-21525408

RESUMEN

Human embryonic stem cells (hESCs) hold enormous promise for regenerative medicine. Typically, hESC-based applications would require their in vitro differentiation into a desirable homogenous cell population. A major challenge of the current hESC differentiation paradigm is the inability to effectively capture and, in the long-term, stably expand primitive lineage-specific stem/precursor cells that retain broad differentiation potential and, more importantly, developmental stage-specific differentiation propensity. Here, we report synergistic inhibition of glycogen synthase kinase 3 (GSK3), transforming growth factor ß (TGF-ß), and Notch signaling pathways by small molecules can efficiently convert monolayer cultured hESCs into homogenous primitive neuroepithelium within 1 wk under chemically defined condition. These primitive neuroepithelia can stably self-renew in the presence of leukemia inhibitory factor, GSK3 inhibitor (CHIR99021), and TGF-ß receptor inhibitor (SB431542); retain high neurogenic potential and responsiveness to instructive neural patterning cues toward midbrain and hindbrain neuronal subtypes; and exhibit in vivo integration. Our work uniformly captures and maintains primitive neural stem cells from hESCs.


Asunto(s)
Células Madre Embrionarias/citología , Células-Madre Neurales/citología , Técnicas de Cultivo de Célula , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Madre Embrionarias/efectos de los fármacos , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Humanos , Receptores Notch/antagonistas & inhibidores , Factor de Crecimiento Transformador beta/antagonistas & inhibidores
9.
J Neurosci ; 32(45): 15837-42, 2012 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-23136422

RESUMEN

After transplantation, individual stem cell-derived neurons can functionally integrate into the host CNS; however, evidence that neurons derived from transplanted human embryonic stem cells (hESCs) can drive endogenous neuronal network activity in CNS tissue is still lacking. Here, using multielectrode array recordings, we report activation of high-frequency oscillations in the ß and γ ranges (10-100 Hz) in the host hippocampal network via targeted optogenetic stimulation of transplanted hESC-derived neurons.


Asunto(s)
Células Madre Embrionarias/trasplante , Hipocampo/fisiología , Células-Madre Neurales/trasplante , Neuronas/trasplante , Potenciales de Acción/fisiología , Animales , Células Madre Embrionarias/citología , Femenino , Hipocampo/citología , Humanos , Masculino , Células-Madre Neurales/citología , Neurogénesis/fisiología , Neuronas/citología , Optogenética , Ratas , Ratas Sprague-Dawley
10.
Nat Methods ; 6(11): 805-8, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19838168

RESUMEN

The slow kinetics and low efficiency of reprogramming methods to generate human induced pluripotent stem cells (iPSCs) impose major limitations on their utility in biomedical applications. Here we describe a chemical approach that dramatically improves (200-fold) the efficiency of iPSC generation from human fibroblasts, within seven days of treatment. This will provide a basis for developing safer, more efficient, nonviral methods for reprogramming human somatic cells.


Asunto(s)
Diferenciación Celular/genética , Células Madre Pluripotentes Inducidas/citología , Benzamidas/farmacología , Dioxoles/farmacología , Difenilamina/análogos & derivados , Difenilamina/farmacología , Fibroblastos/fisiología , Humanos , Células Madre Pluripotentes Inducidas/fisiología , MAP Quinasa Quinasa 1/antagonistas & inhibidores , Pirimidinas/farmacología , Receptores de Factores de Crecimiento Transformadores beta/antagonistas & inhibidores , Tiazoles/farmacología , Transducción Genética
11.
Methods Mol Biol ; 2239: 61-75, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33226613

RESUMEN

Direct neural reprogramming involves a rapid conversion of somatic cells into neural cells without passing through the intermediate pluripotent stage. This phenomenon can be mediated in the starting somatic cells by the introduction of lineage-specific master transcription factors or by pluripotency factors routinely used in iPS cell generation. In the latter process known as Pluripotency factor-mediated Direct Reprogramming (PDR), the pluripotency factors are used to elicit epigenetic changes producing a permissive state in the starting cells which are then driven to the neural lineages by simple manipulations of the culture conditions. When genes are exogenously introduced to achieve such conversion, their persistent expression after completion of the reprogramming can affect the properties of the resulting cells. Here, we describe a robust method for direct neural reprogramming using the episomal vectors that incorporate a suicide gene scFCY1 (encoding cytosine deaminase) that allows rapid and efficient generation of a homogenous population of transgene-free human-induced neural progenitor cells (hiNPCs). The resulting NESTIN+/PAX6+/CDH2+ hiNPCs can be expanded and cryopreserved and can be further differentiated into neurons and glia.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Técnicas de Reprogramación Celular/métodos , Reprogramación Celular/genética , Citosina Desaminasa/metabolismo , Fibroblastos/citología , Células-Madre Neurales/citología , Neuronas/citología , Antígenos CD/genética , Antígenos CD/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Células Cultivadas , Citosina Desaminasa/genética , Electroporación , Vectores Genéticos , Humanos , Inmunohistoquímica , Nestina/genética , Nestina/metabolismo , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Factor de Transcripción PAX6/genética , Factor de Transcripción PAX6/metabolismo , Plásmidos/genética , Plásmidos/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
12.
Elife ; 82019 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-31782729

RESUMEN

Human Alzheimer's disease (AD) brains and transgenic AD mouse models manifest hyperexcitability. This aberrant electrical activity is caused by synaptic dysfunction that represents the major pathophysiological correlate of cognitive decline. However, the underlying mechanism for this excessive excitability remains incompletely understood. To investigate the basis for the hyperactivity, we performed electrophysiological and immunofluorescence studies on hiPSC-derived cerebrocortical neuronal cultures and cerebral organoids bearing AD-related mutations in presenilin-1 or amyloid precursor protein vs. isogenic gene corrected controls. In the AD hiPSC-derived neurons/organoids, we found increased excitatory bursting activity, which could be explained in part by a decrease in neurite length. AD hiPSC-derived neurons also displayed increased sodium current density and increased excitatory and decreased inhibitory synaptic activity. Our findings establish hiPSC-derived AD neuronal cultures and organoids as a relevant model of early AD pathophysiology and provide mechanistic insight into the observed hyperexcitability.


Asunto(s)
Potenciales de Acción , Enfermedad de Alzheimer/fisiopatología , Cerebro/citología , Excitabilidad Cortical , Fenómenos Electrofisiológicos , Células Madre Pluripotentes Inducidas/fisiología , Neuronas/fisiología , Precursor de Proteína beta-Amiloide/genética , Animales , Tamaño de la Célula , Células Cultivadas , Técnica del Anticuerpo Fluorescente , Humanos , Ratones , Modelos Teóricos , Proteínas Mutantes/genética , Organoides , Presenilina-1/genética
13.
Chem Biol ; 14(9): 974-5, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17884628

RESUMEN

Small molecules that can alter stem cell fate are of immense biological and therapeutic values. In this issue of Chemistry & Biology, Saxe and colleagues report a chemical genetic screen that identified an orphan ligand, P-Ser, which can modulate neural stem/progenitor cell fate.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Neuronas/citología , Células Madre/citología , Animales , Células Cultivadas , Evaluación Preclínica de Medicamentos/métodos , Humanos , Ligandos , Monoéster Fosfórico Hidrolasas/antagonistas & inhibidores , Células Madre/efectos de los fármacos
14.
J Genet ; 97(3): 729-751, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30027906

RESUMEN

Parkinson's disease (PD) is a debilitating neurodegenerative disorder, for which people above the age of 60 show an increased risk. Although there has been great advancement in understanding the disease-related abnormalities in brain circuitry and development of symptomatic treatments, a cure for PD remains elusive. The discovery of PD associated gene mutations and environmental toxins have yielded animal models of the disease. These models could recapitulate several key aspects of PD, and provide more insights into the disease pathogenesis. They have also revealed novel aspects of the disease mechanism including noncell autonomous events and spreading of pathogenic protein species across the brain. Nevertheless, none of these models so far can comprehensively represent all aspects of the human disease. While the field is still searching for the perfect model system, recent developments in stem cell biology have provided a new dimension to modelling PD, especially doing it in a patient-specific manner. In the current review, we attempt to summarize the key findings in the areas discussed above, and highlight how the core PD pathology distinguishes itself from other neurodegenerative disorders while also resembling them in many aspects.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedad de Parkinson/patología , Animales , Interacción Gen-Ambiente , Humanos , Inflamación/patología , Modelos Biológicos , Mutación/genética , Enfermedad de Parkinson/genética
15.
Nat Commun ; 9(1): 817, 2018 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-29483518

RESUMEN

Neuronal loss in Parkinson's disease (PD) is associated with aberrant mitochondrial function and impaired proteostasis. Identifying the mechanisms that link these pathologies is critical to furthering our understanding of PD pathogenesis. Using human pluripotent stem cells (hPSCs) that allow comparison of cells expressing mutant SNCA (encoding α-synuclein (α-syn)) with isogenic controls, or SNCA-transgenic mice, we show that SNCA-mutant neurons display fragmented mitochondria and accumulate α-syn deposits that cluster to mitochondrial membranes in response to exposure of cardiolipin on the mitochondrial surface. Whereas exposed cardiolipin specifically binds to and facilitates refolding of α-syn fibrils, prolonged cardiolipin exposure in SNCA-mutants initiates recruitment of LC3 to the mitochondria and mitophagy. Moreover, we find that co-culture of SNCA-mutant neurons with their isogenic controls results in transmission of α-syn pathology coincident with mitochondrial pathology in control neurons. Transmission of pathology is effectively blocked using an anti-α-syn monoclonal antibody (mAb), consistent with cell-to-cell seeding of α-syn.


Asunto(s)
Cardiolipinas/farmacología , Mitocondrias/efectos de los fármacos , Membranas Mitocondriales/efectos de los fármacos , Neuronas/metabolismo , Enfermedad de Parkinson Secundaria/genética , alfa-Sinucleína/genética , Animales , Anticuerpos Monoclonales/farmacología , Comunicación Celular , Diferenciación Celular , Línea Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Femenino , Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Ratones , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/ultraestructura , Mitofagia/efectos de los fármacos , Mutación , Neuronas/efectos de los fármacos , Neuronas/patología , Enfermedad de Parkinson Secundaria/metabolismo , Enfermedad de Parkinson Secundaria/patología , Pliegue de Proteína/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , alfa-Sinucleína/metabolismo
16.
Nat Commun ; 9(1): 1070, 2018 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-29523838

RESUMEN

The original version of the Supplementary Information associated with this Article inadvertently omitted Supplementary Table 1. The HTML has now been updated to include a corrected version of the Supplementary Information.

17.
Nat Commun ; 8(1): 1403, 2017 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-29123083

RESUMEN

Cerebrovascular changes occur in Alzheimer's disease (AD). Using in vivo phage display, we searched for molecular markers of the neurovascular unit, including endothelial cells and astrocytes, in mouse models of AD. We identified a cyclic peptide, CDAGRKQKC (DAG), that accumulates in the hippocampus of hAPP-J20 mice at different ages. Intravenously injected DAG peptide homes to neurovascular unit endothelial cells and to reactive astrocytes in mouse models of AD. We identified connective tissue growth factor (CTGF), a matricellular protein that is highly expressed in the brain of individuals with AD and in mouse models, as the target of the DAG peptide. We also showed that exogenously delivered DAG homes to the brain in mouse models of glioblastoma, traumatic brain injury, and Parkinson's disease. DAG may potentially be used as a tool to enhance delivery of therapeutics and imaging agents to sites of vascular changes and astrogliosis in diseases associated with neuroinflammation.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos Cíclicos/metabolismo , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Astrocitos/metabolismo , Astrocitos/patología , Encéfalo/irrigación sanguínea , Encéfalo/metabolismo , Encéfalo/patología , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Modelos Animales de Enfermedad , Hipocampo/irrigación sanguínea , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Ratones Transgénicos , Biblioteca de Péptidos , Péptidos Cíclicos/química , Unión Proteica
18.
Cell Rep ; 21(8): 2171-2182, 2017 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-29166608

RESUMEN

Mutations in PARK6 (PINK1) and PARK2 (Parkin) are linked to rare familial cases of Parkinson's disease (PD). Mutations in these genes result in pathological dysregulation of mitophagy, contributing to neurodegeneration. Here, we report that environmental factors causing a specific posttranslational modification on PINK1 can mimic these genetic mutations. We describe a molecular mechanism for impairment of mitophagy via formation of S-nitrosylated PINK1 (SNO-PINK1). Mitochondrial insults simulating age- or environmental-related stress lead to increased SNO-PINK1, inhibiting its kinase activity. SNO-PINK1 decreases Parkin translocation to mitochondrial membranes, disrupting mitophagy in cell lines and human-iPSC-derived neurons. We find levels of SNO-PINK1 in brains of α-synuclein transgenic PD mice similar to those in cell-based models, indicating the pathophysiological relevance of our findings. Importantly, SNO-PINK1-mediated deficits in mitophagy contribute to neuronal cell death. These results reveal a direct molecular link between nitrosative stress, SNO-PINK1 formation, and mitophagic dysfunction that contributes to the pathogenesis of PD.


Asunto(s)
Mitocondrias/genética , Mitofagia/genética , Enfermedad de Parkinson/genética , Proteínas Quinasas/genética , Ubiquitina-Proteína Ligasas/genética , Animales , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Mitocondrias/metabolismo , Mutación/genética , Neuronas/metabolismo , Enfermedad de Parkinson/metabolismo , Proteínas Quinasas/metabolismo
19.
Nat Commun ; 8(1): 1488, 2017 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-29133852

RESUMEN

Transcription factor MEF2C regulates multiple genes linked to autism spectrum disorder (ASD), and human MEF2C haploinsufficiency results in ASD, intellectual disability, and epilepsy. However, molecular mechanisms underlying MEF2C haploinsufficiency syndrome remain poorly understood. Here we report that Mef2c +/-(Mef2c-het) mice exhibit behavioral deficits resembling those of human patients. Gene expression analyses on brains from these mice show changes in genes associated with neurogenesis, synapse formation, and neuronal cell death. Accordingly, Mef2c-het mice exhibit decreased neurogenesis, enhanced neuronal apoptosis, and an increased ratio of excitatory to inhibitory (E/I) neurotransmission. Importantly, neurobehavioral deficits, E/I imbalance, and histological damage are all ameliorated by treatment with NitroSynapsin, a new dual-action compound related to the FDA-approved drug memantine, representing an uncompetitive/fast off-rate antagonist of NMDA-type glutamate receptors. These results suggest that MEF2C haploinsufficiency leads to abnormal brain development, E/I imbalance, and neurobehavioral dysfunction, which may be mitigated by pharmacological intervention.


Asunto(s)
Trastorno Autístico/genética , Encéfalo/crecimiento & desarrollo , Antagonistas de Aminoácidos Excitadores/uso terapéutico , Haploinsuficiencia , Memantina/análogos & derivados , Memantina/uso terapéutico , Animales , Trastorno Autístico/patología , Trastorno Autístico/fisiopatología , Conducta Animal , Biomarcadores/metabolismo , Encéfalo/patología , Encéfalo/fisiopatología , Muerte Celular , Modelos Animales de Enfermedad , Regulación hacia Abajo , Antagonistas de Aminoácidos Excitadores/farmacología , Perfilación de la Expresión Génica , Humanos , Potenciación a Largo Plazo/genética , Factores de Transcripción MEF2/genética , Memantina/farmacología , Ratones Endogámicos C57BL , Neurogénesis/genética , Neuronas/patología , Fenotipo , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Sinapsis/patología , Transmisión Sináptica/genética
20.
Nat Commun ; 7: 10242, 2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26743041

RESUMEN

Metabolic syndrome (MetS) and Type 2 diabetes mellitus (T2DM) increase risk for Alzheimer's disease (AD). The molecular mechanism for this association remains poorly defined. Here we report in human and rodent tissues that elevated glucose, as found in MetS/T2DM, and oligomeric ß-amyloid (Aß) peptide, thought to be a key mediator of AD, coordinately increase neuronal Ca(2+) and nitric oxide (NO) in an NMDA receptor-dependent manner. The increase in NO results in S-nitrosylation of insulin-degrading enzyme (IDE) and dynamin-related protein 1 (Drp1), thus inhibiting insulin and Aß catabolism as well as hyperactivating mitochondrial fission machinery. Consequent elevation in Aß levels and compromise in mitochondrial bioenergetics result in dysfunctional synaptic plasticity and synapse loss in cortical and hippocampal neurons. The NMDA receptor antagonist memantine attenuates these effects. Our studies show that redox-mediated posttranslational modification of brain proteins link Aß and hyperglycaemia to cognitive dysfunction in MetS/T2DM and AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Dinaminas/metabolismo , Glucosa/metabolismo , Hiperglucemia/metabolismo , Insulisina/metabolismo , Neuronas/metabolismo , Óxido Nítrico/metabolismo , Compuestos Nitrosos/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/patología , Animales , Encéfalo/citología , Encéfalo/patología , Estudios de Casos y Controles , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Espinas Dendríticas , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animales de Enfermedad , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , GTP Fosfohidrolasas/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Immunoblotting , Células Madre Pluripotentes Inducidas , Insulina/metabolismo , Potenciación a Largo Plazo , Masculino , Memantina/farmacología , Síndrome Metabólico/metabolismo , Ratones , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Mitocondriales/metabolismo , Consumo de Oxígeno , Ratas , Especies de Nitrógeno Reactivo , Sinapsis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA