Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Med Genet A ; 194(4): e63476, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37974505

RESUMEN

Cat Eye Syndrome (CES) is a rare genetic disease caused by the presence of a small supernumerary marker chromosome derived from chromosome 22, which results in a partial tetrasomy of 22p-22q11.21. CES is classically defined by association of iris coloboma, anal atresia, and preauricular tags or pits, with high clinical and genetic heterogeneity. We conducted an international retrospective study of patients carrying genomic gain in the 22q11.21 chromosomal region upstream from LCR22-A identified using FISH, MLPA, and/or array-CGH. We report a cohort of 43 CES cases. We highlight that the clinical triad represents no more than 50% of cases. However, only 16% of CES patients presented with the three signs of the triad and 9% not present any of these three signs. We also highlight the importance of other impairments: cardiac anomalies are one of the major signs of CES (51% of cases), and high frequency of intellectual disability (47%). Ocular motility defects (45%), abdominal malformations (44%), ophthalmologic malformations (35%), and genitourinary tract defects (32%) are other frequent clinical features. We observed that sSMC is the most frequent chromosomal anomaly (91%) and we highlight the high prevalence of mosaic cases (40%) and the unexpectedly high prevalence of parental transmission of sSMC (23%). Most often, the transmitting parent has mild or absent features and carries the mosaic marker at a very low rate (<10%). These data allow us to better delineate the clinical phenotype associated with CES, which must be taken into account in the cytogenetic testing for this syndrome. These findings draw attention to the need for genetic counseling and the risk of recurrence.


Asunto(s)
Aneuploidia , Trastornos de los Cromosomas , Cromosomas Humanos Par 22 , Anomalías del Ojo , Cardiopatías Congénitas , Humanos , Estudios Retrospectivos , Hibridación Fluorescente in Situ , Cromosomas Humanos Par 22/genética , Cardiopatías Congénitas/genética
2.
Int J Mol Sci ; 24(4)2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36835074

RESUMEN

Reciprocal translocation (RT) carriers produce a proportion of unbalanced gametes that expose them to a higher risk of infertility, recurrent miscarriage, and fetus or children with congenital anomalies and developmental delay. To reduce these risks, RT carriers can benefit from prenatal diagnosis (PND) or preimplantation genetic diagnosis (PGD). Sperm fluorescence in situ hybridization (spermFISH) has been used for decades to investigate the sperm meiotic segregation of RT carriers, but a recent report indicates a very low correlation between spermFISH and PGD outcomes, raising the question of the usefulness of spermFISH for these patients. To address this point, we report here the meiotic segregation of 41 RT carriers, the largest cohort reported to date, and conduct a review of the literature to investigate global segregation rates and look for factors that may or may not influence them. We confirm that the involvement of acrocentric chromosomes in the translocation leads to more unbalanced gamete proportions, in contrast to sperm parameters or patient age. In view of the dispersion of balanced sperm rates, we conclude that routine implementation of spermFISH is not beneficial for RT carriers.


Asunto(s)
Análisis de Semen , Semen , Humanos , Embarazo , Femenino , Masculino , Hibridación Fluorescente in Situ , Heterocigoto , Translocación Genética , Espermatozoides , Segregación Cromosómica , Meiosis
3.
J Med Genet ; 56(8): 526-535, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30923172

RESUMEN

BACKGROUND: Balanced chromosomal rearrangements associated with abnormal phenotype are rare events, but may be challenging for genetic counselling, since molecular characterisation of breakpoints is not performed routinely. We used next-generation sequencing to characterise breakpoints of balanced chromosomal rearrangements at the molecular level in patients with intellectual disability and/or congenital anomalies. METHODS: Breakpoints were characterised by a paired-end low depth whole genome sequencing (WGS) strategy and validated by Sanger sequencing. Expression study of disrupted and neighbouring genes was performed by RT-qPCR from blood or lymphoblastoid cell line RNA. RESULTS: Among the 55 patients included (41 reciprocal translocations, 4 inversions, 2 insertions and 8 complex chromosomal rearrangements), we were able to detect 89% of chromosomal rearrangements (49/55). Molecular signatures at the breakpoints suggested that DNA breaks arose randomly and that there was no major influence of repeated elements. Non-homologous end-joining appeared as the main mechanism of repair (55% of rearrangements). A diagnosis could be established in 22/49 patients (44.8%), 15 by gene disruption (KANSL1, FOXP1, SPRED1, TLK2, MBD5, DMD, AUTS2, MEIS2, MEF2C, NRXN1, NFIX, SYNGAP1, GHR, ZMIZ1) and 7 by position effect (DLX5, MEF2C, BCL11B, SATB2, ZMIZ1). In addition, 16 new candidate genes were identified. Systematic gene expression studies further supported these results. We also showed the contribution of topologically associated domain maps to WGS data interpretation. CONCLUSION: Paired-end WGS is a valid strategy and may be used for structural variation characterisation in a clinical setting.


Asunto(s)
Aberraciones Cromosómicas , Discapacidades del Desarrollo/diagnóstico , Discapacidades del Desarrollo/genética , Reordenamiento Génico , Estudios de Asociación Genética , Fenotipo , Secuenciación Completa del Genoma , Adolescente , Adulto , Biomarcadores , Niño , Preescolar , Puntos de Rotura del Cromosoma , Variaciones en el Número de Copia de ADN , Femenino , Estudios de Asociación Genética/métodos , Humanos , Lactante , Masculino , Relación Estructura-Actividad , Translocación Genética , Adulto Joven
4.
Clin Genet ; 94(6): 575-580, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30221343

RESUMEN

We report findings from a male fetus of 26 weeks' gestational age with severe isolated intrauterine growth restriction (IUGR). Chromosomal microarray analysis (CMA) on amniotic fluid cells revealed a 1.06-Mb duplication in 19q13.42 inherited from the healthy father. This duplication contains 34 genes including ZNF331, a gene encoding a zinc-finger protein specifically imprinted (paternally expressed) in the placenta. Study of the ZNF331 promoter by methylation-specific-multiplex ligation-dependent probe amplification showed that the duplicated allele was not methylated in the fetus unlike in the father's genome, suggesting both copies of the ZNF331 gene are expressed in the fetus. The anti-ZNF331 immunohistochemical analysis confirmed that ZNF331 was expressed at higher levels in renal and placental tissues from this fetus compared to controls. Interestingly, ZNF331 expression levels in the placenta have previously been reported to inversely correlate with fetal growth parameters. The original observation presented in this report showed that duplication of ZNF331 could be a novel genetic cause of isolated IUGR and underlines the usefulness of CMA to investigate the genetic causes of isolated severe IUGR.


Asunto(s)
Cromosomas Humanos Par 19 , Retardo del Crecimiento Fetal/diagnóstico , Retardo del Crecimiento Fetal/genética , Duplicación de Gen , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Impresión Genómica , Adulto , Biopsia , Proteínas de Unión al ADN/genética , Epigénesis Genética , Femenino , Estudios de Asociación Genética/métodos , Pruebas Genéticas , Humanos , Inmunohistoquímica , Proteínas de Neoplasias/genética , Embarazo , Ultrasonografía Prenatal
5.
J Med Genet ; 54(7): 502-510, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28270404

RESUMEN

BACKGROUND: Congenital anomalies of the kidney and urinary tract (CAKUT) represent a significant healthcare burden since it is the primary cause of chronic kidney in children. CNVs represent a recurrent molecular cause of CAKUT but the culprit gene remains often elusive. Our study aimed to define the gene responsible for CAKUT in patients with an 1q23.3q24.1 microdeletion. METHODS: We describe eight patients presenting with CAKUT carrying an 1q23.3q24.1 microdeletion as identified by chromosomal microarray analysis (CMA). Clinical features were collected, especially the renal and urinary tract phenotype, and extrarenal features. We characterised PBX1 expression and localisation in fetal and adult kidneys using quantitative RT-PCR and immunohistochemistry. RESULTS: We defined a 276-kb minimal common region (MCR) that only overlaps with the PBX1 gene. All eight patients presented with syndromic CAKUT. CAKUT were mostly bilateral renal hypoplasia (75%). The most frequent extrarenal symptoms were developmental delay and ear malformations. We demonstrate that PBX1 is strongly expressed in fetal kidneys and brain and expression levels decreased in adult samples. In control fetal kidneys, PBX1 was localised in nuclei of medullary, interstitial and mesenchymal cells, whereas it was present in endothelial cells in adult kidneys. CONCLUSIONS: Our results indicate that PBX1 haploinsufficiency leads to syndromic CAKUT as supported by the Pbx1-null mice model. Correct PBX1 dosage appears to be critical for normal nephrogenesis and seems important for brain development in humans. CMA should be recommended in cases of fetal renal anomalies to improve genetic counselling and pregnancy management.


Asunto(s)
Haploinsuficiencia/genética , Factor de Transcripción 1 de la Leucemia de Células Pre-B/genética , Anomalías Urogenitales/genética , Reflujo Vesicoureteral/genética , Niño , Preescolar , Femenino , Feto/metabolismo , Genoma Humano , Humanos , Lactante , Riñón/anomalías , Riñón/embriología , Riñón/metabolismo , Riñón/patología , Masculino , Síndrome
6.
Soins Pediatr Pueric ; 39(302): 36-39, 2018.
Artículo en Francés | MEDLINE | ID: mdl-29747770

RESUMEN

The life expectancy of people with trisomy 21 has increased over recent decades. More than half live over 55 years today, compared to just 9 years in 1929. This progress is thanks to easier access to care and improved medical diagnoses as well as greater physical and psychological stimulation. Continued monitoring remains essential but it becomes less systematic as children grow up, despite the risk of certain complications increasing from puberty. Consultations devoted to trisomy 21 aim to facilitate access to care through an adapted care pathway.


Asunto(s)
Atención a la Salud , Síndrome de Down , Derivación y Consulta , Adolescente , Niño , Humanos , Adulto Joven
7.
Genet Med ; 19(6): 701-710, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27906199

RESUMEN

PURPOSE: To determine whether duplication of the ARID1A gene is responsible for a new recognizable syndrome. METHODS: We describe four patients with a 1p36.11 microduplication involving ARID1A as identified by array-comparative genomic hybridization . We performed comparative transcriptomic analysis of patient-derived fibroblasts using RNA sequencing and evaluated the impact of ARID1A duplication on the cell cycle using fluorescence-activated cell sorting. Functional relationships between differentially expressed genes were investigated with ingenuity pathway analysis (IPA). RESULTS: Combining the genomic data, we defined a small (122 kb), minimally critical region that overlaps the full ARID1A gene. The four patients shared a strikingly similar phenotype that included intellectual disability and microcephaly. Transcriptomic analysis revealed the deregulated expression of several genes previously linked to microcephaly and developmental disorders as well as the involvement of signaling pathways relevant to microcephaly, among which the polo-like kinase (PLK) pathway was especially notable. Cell-cycle analysis of patient-derived fibroblasts showed a significant increase in the proportion of cells in G1 phase at the expense of G2-M cells. CONCLUSION: Our study reports a new microduplication syndrome involving the ARID1A gene. This work is the first step in clarifying the pathophysiological mechanism that links changes in the gene dosage of ARID1A with intellectual disability and microcephaly.Genet Med advance online publication 01 December 2016.


Asunto(s)
Cromosomas Humanos Par 1 , Duplicación de Gen , Discapacidad Intelectual/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética , Adolescente , Adulto , Niño , Proteínas de Unión al ADN , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Síndrome
8.
Hum Reprod ; 31(6): 1164-72, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27094479

RESUMEN

STUDY QUESTION: Does DNAH1 status influence intracytoplasmic sperm injection (ICSI) outcomes for patients with multiple morphological abnormalities of the sperm flagella (MMAF)? SUMMARY ANSWER: Despite a highly abnormal morphology, sperm from MMAF patients with DNAH1 mutations have a low aneuploidy rate and good nuclear quality, leading to good embryonic development following ICSI and a high pregnancy rate. WHAT IS KNOWN ALREADY: Teratozoospermia represents a heterogeneous group including a wide range of phenotypes. Among all these qualitative defects, a flagellar phenotype called MMAF is characterized by a mosaic of morphological abnormalities of the flagellum, including coiled, bent, irregular, short or/and absent flagella, mainly due to the absence of the axonemal central pair microtubules. We previously demonstrated that homozygous mutations in the DNAH1 gene, encoding an inner arm heavy chain dynein, are frequently found in patients with MMAF (28% of the patients from the initial cohort). Numerous studies have reported an increased rate of aneuploidy and a poor sperm nuclear quality related to sperm flagellar abnormalities, which could impede ICSI outcome. Moreover, success rates after ICSI may be influenced by the type of ultrastructural flagellar defects and/or by the gene defects carried by the patients. STUDY DESIGN, SIZE, DURATION: This retrospective cohort study included 6 infertile males with MMAF due to deleterious homozygous DNAH1 mutations and their respective spouses, who underwent 9 ISCI cycles, with 16 embryos being transferred. ICSI results were compared with two control populations of 13 MMAF men without DNAH1 mutations and an aged-matched control group of 1431 non-MMAF couples. All ICSI attempts took place between 2000 and 2012. PARTICIPANTS/MATERIALS, SETTING, METHODS: Clinical and biological data were collected from patients treated for infertility at the CPSR les Jasmins in Tunis (Tunisia). We compared the ICSI outcomes obtained with couples including DNAH1 mutated and nonmutated patients and non-MMAF couples. For the analysis of the chromosomal status, fluorescence in situ hybridization (FISH) analyses were performed on sperm cells from 3 DNAH1-mutated patients and from 29 fertile control subjects. Sperm chromatin condensation and DNA fragmentation were evaluated using aniline blue staining and TUNEL assays, respectively, on sperm cells from 3 DNAH1-mutated men and 6 fertile controls. MAIN RESULTS AND THE ROLE OF CHANCE: There was a significantly increased proportion of disomy XY and 18 in sperm from DNAH1 mutated patients compared with fertile controls (1.52 versus 0.28%, P = 0.0001 and 0.64 versus 0.09%, P = 0.0001). However, there were no statistically significant differences among sperm from the two groups in their frequencies of either 13, 21, XX or YY disomy or diploidy. Measures of DNA compaction and fragmentation demonstrated a good nuclear sperm quality among DNAH1 mutated men. The overall fertilization, pregnancy and delivery rates of couples including DNAH1 mutated men were of 70.8, 50.0 and 37.5%, respectively. There were no statistically significant differences in any of these parameters compared with the two control groups (P > 0.05). LIMITATIONS, REASONS FOR CAUTION: A limitation of this study is the small number of DNAH1-mutated patients available and the low number of genes identified in MMAF. Further genetic studies are warranted to identify other MMAF-inducing genes to better characterize the genetic etiology of the MMAF phenotype and to improve the management of patients diagnosed with flagellar defects. WIDER IMPLICATIONS OF THE FINDINGS: MMAF patients with DNAH1 mutations have low aneuploidy rates and good nuclear sperm quality, explaining the high pregnancy rate obtained with these patients. Good ICSI results were obtained for both MMAF groups (DNAH1 mutated and nonmutated), suggesting that patients presenting with asthenozoospermia due to flagellar defects have a good ICSI prognosis irrespective of their genotype. The majority of MMAF cases currently remain idiopathic with no genetic cause yet identified. In depth genetic analysis of these patients using next generation sequencing should reveal new causal genes. Subsequent genotype phenotype analyses could improve advice and care provided to MMAF patients. STUDY FUNDING/COMPETING INTERESTS: None of the authors have any competing interest. This work is part of the project 'Identification and Characterization of Genes Involved in Infertility (ICG2I)', funded by the program GENOPAT 2009 from the French Research Agency (ANR) and the MAS-Flagella project, financed by the French ANR and the Direction Générale de l'Offre de Soins (DGOS).


Asunto(s)
Axonema/genética , Dineínas/genética , Infertilidad Masculina/genética , Mutación , Inyecciones de Esperma Intracitoplasmáticas , Espermatozoides/anomalías , Adulto , Axonema/ultraestructura , Fragmentación del ADN , Femenino , Flagelos/ultraestructura , Humanos , Hibridación Fluorescente in Situ , Etiquetado Corte-Fin in Situ , Infertilidad Masculina/terapia , Masculino , Recuperación del Oocito , Inducción de la Ovulación , Embarazo , Índice de Embarazo , Pronóstico , Estudios Retrospectivos , Resultado del Tratamiento
9.
Am J Med Genet A ; 170A(2): 498-503, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26545049

RESUMEN

Several studies have recently reported that 22q12.1 deletions encompassing the MN1 gene are associated with craniofacial anomalies. These observations are consistent with the hypothesis that MN1 haploinsufficiency may be solely responsible for craniofacial anomalies and/or cleft palate. We report here the case of a 4-year-old boy presenting with global developmental delay and craniofacial anomalies including severe maxillary protrusion and retromicrognathia. Array-CGH detected a 2.4 Mb de novo deletion of chromosome 22q12.1 which did not encompass the MN1 gene thought to be the main pathological candidate in 22q12.1 deletions. This observation, combined with data from other patients from the Database of Chromosomal Imbalance and Phenotype in Humans Using Ensemble Resources (DECIPHER), suggests that other gene(s) in the 22q12.1 region are likely involved in craniofacial anomalies and/or may contribute to the phenotypic variability observed in patients with MN1 deletion.


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 22/genética , Anomalías Craneofaciales/genética , Proteínas Supresoras de Tumor/genética , Adulto , Preescolar , Hibridación Genómica Comparativa , Anomalías Craneofaciales/diagnóstico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Transactivadores
10.
Prenat Diagn ; 36(6): 523-9, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27018091

RESUMEN

OBJECTIVE: Sex chromosome aneuploidies are frequently detected fortuitously in a prenatal diagnosis. Most cases of 47, XXX and 47, XYY syndromes are diagnosed in this context, and parents are thus faced with an unexpected situation. The objective of the present study was to characterize a French cohort of prenatally diagnosed cases of 47, XXX and 47, XYY and to evaluate the termination of pregnancy (TOP) rate before and after France's implementation of multidisciplinary centres for prenatal diagnosis in 1997. METHODS: This retrospective study identified respectively 291 and 175 cases of prenatally diagnosed 47, XXX and 47, XYY between 1976 and 2012. For each case, the indication, maternal age, karyotype and outcome were recorded. RESULTS: Most diagnoses of the two conditions were fortuitous. The occurrence of 47, XXX was associated with advanced maternal age. The overall TOP rate was higher for 47, XXX (22.9%) than for 47, XYY (14.6%), although this difference was not statistically significant. However, the TOP rates fell significantly after 1997 (from 41.1% to 11.8% for 47, XXX and from 25.8% to 6.7% for 47, XYY). CONCLUSION: The TOP rates after prenatal diagnoses of 47, XXX and 47, XYY fell significantly after 1997, following France's implementation of multidisciplinary centres for prenatal diagnosis. © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Aborto Inducido/estadística & datos numéricos , Aborto Espontáneo/epidemiología , Resultado del Embarazo/epidemiología , Trastornos de los Cromosomas Sexuales del Desarrollo Sexual/epidemiología , Trastornos de los Cromosomas Sexuales/epidemiología , Cariotipo XYY/epidemiología , Aborto Inducido/tendencias , Adulto , Amniocentesis , Muestra de la Vellosidad Coriónica , Cromosomas Humanos X , Estudios de Cohortes , Femenino , Muerte Fetal , Francia/epidemiología , Humanos , Edad Materna , Embarazo , Diagnóstico Prenatal , Estudios Retrospectivos , Aberraciones Cromosómicas Sexuales , Trastornos de los Cromosomas Sexuales/diagnóstico , Trastornos de los Cromosomas Sexuales/diagnóstico por imagen , Trastornos de los Cromosomas Sexuales del Desarrollo Sexual/diagnóstico , Trastornos de los Cromosomas Sexuales del Desarrollo Sexual/diagnóstico por imagen , Trisomía/diagnóstico , Cariotipo XYY/diagnóstico , Cariotipo XYY/diagnóstico por imagen
11.
Eur J Pediatr ; 174(1): 75-83, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24985125

RESUMEN

UNLABELLED: Intellectual disability (ID) is characterized by limitation in intellectual function and adaptive behavior, with onset in childhood. Frequent identifiable causes of ID originate from chromosomal imbalances. During the last years, array-CGH has successfully contributed to improve the diagnostic detection rate of genetic abnormalities in patients with ID. Most array-CGH studies focused on patients with moderate or severe intellectual disability. Studies on genetic etiology in children with mild intellectual disability (ID) are very rare. We performed array-CGH analysis in 66 children with mild intellectual disability assessed in a population-based study and for whom no genetic etiology was identified. We found one or more copy number variations (CNVs) in 20 out of 66 (~30 %) patients with a mild ID. In eight of them (~12 %), the CNVs were certainly responsible for the phenotype and in six they were potentially pathogenic for ID. Altogether, array-CGH helped to determine the etiology of ID in 14 patients (~21 %). CONCLUSION: Our results underscore the clinical relevance of array-CGH to investigate the etiology of isolated idiopathic mild ID in patients or associated with even subtle dysmorphic features or congenital malformations.


Asunto(s)
Hibridación Genómica Comparativa/métodos , Variaciones en el Número de Copia de ADN/genética , Discapacidad Intelectual/genética , Adolescente , Discapacidades del Desarrollo/genética , Femenino , Humanos , Discapacidad Intelectual/etiología , Masculino , Análisis por Matrices de Proteínas/métodos
12.
Am J Med Genet A ; 164A(6): 1530-6, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24648389

RESUMEN

We report on a young child with intellectual disability and unilateral coronal craniosynostosis leading to craniofacial malformations. Standard karyotype showed an apparently balanced translocation between chromosomes 2 and 15 [t(2;15)(q21;q21.3)], inherited from his mother. Interestingly, array-CGH 180K showed a 3.64 Mb de novo deletion on chromosome 15 in the region 15q21.3q22.2, close to the chromosome 15 translocation breakpoints. This deletion leads to haploinsufficiency of TCF12 gene that can explain the coronal craniosynostosis described in the patient. Additional FISH analyses showed a complex balanced maternal chromosomal rearrangement combining the reciprocal translocation t(2;15)(q21;q21.3), and an insertion of the 15q22.1 segment into the telomeric region of the translocated 15q fragment. The genomic imbalance in the patient is likely caused by a crossing-over that occurs in the recombination loop formed during the maternal meiosis resulting in the deletion of the inserted fragment. This original case of a genomic microdeletion of TCF12 exemplifies the importance of array-CGH in the clinical investigation of apparently balanced rearrangements but also the importance of FISH analysis to identify the chromosomal mechanism causing the genomic imbalance.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Craneosinostosis/genética , Discapacidad Intelectual/genética , Preescolar , Cromosomas Humanos Par 15/genética , Cromosomas Humanos Par 2/genética , Hibridación Genómica Comparativa , Facies , Eliminación de Gen , Haploinsuficiencia , Humanos , Hibridación Fluorescente in Situ , Cariotipo , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Translocación Genética
13.
Am J Med Genet A ; 158A(10): 2564-70, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22903743

RESUMEN

Many deletions of chromosome 17p13.1 have been described, but very few 17p13.1 duplications have been reported yet. Here, we describe the genotype and phenotype of a boy with a duplication of this region. The main clinical features are mild intellectual deficiency, growth retardation, and a typical Silver-Russell syndrome (SRS) appearance with small triangular face, prominent forehead, micrognathia, low-set ears, and clinodactyly. Array-CGH revealed a 586 kb duplication containing many genes with a high neuronal expression. Interestingly, this region covers the minimal critical region including all candidate genes suggested to explain the 17p13.1 microdeletion syndrome. In the neighboring region 17p13.3, deletions and duplications of the same region are each responsible of a specific phenotype. Future case descriptions will show if a similar mechanism applies to the region 17p13.1. The 17p13.1 region contains interesting putative candidate genes that might be involved in the SRS etiology. Additional data are needed to verify the significance of this aberration.


Asunto(s)
Duplicación Cromosómica , Cromosomas Humanos Par 17/genética , Discapacidad Intelectual/genética , Síndrome de Silver-Russell/genética , Síndrome de Silver-Russell/patología , Adolescente , Hibridación Genómica Comparativa , Estudios de Asociación Genética , Humanos , Hibridación Fluorescente in Situ , Masculino
16.
Basic Clin Androl ; 28: 5, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29760927

RESUMEN

BACKGROUND: Robertsonian translocations (RobT) are common structural chromosome rearrangements where carriers display a majority of chromosomally balanced spermatozoa from alternate segregation mode. According to some monotony observed in the rates of balanced segregation, is sperm FISH analysis obsolete for RobT carriers? METHODS: Retrospective cohort research study on 23 patients analyzed in our center from 2003 to 2017 and compared to the data of 187 patients in literature from 1983 to 2017.Robertsonian translocation carriers were divided in six groups according to the chromosomes involved in the translocation: 9 patients from our center and 107 from literature carrying 45,XY,der(13;14) karyotype, 3 and 35 patients respectively with 45,XY,der(14;21), 5 and 11 patients respectively with 45,XY,der(13;15), 4 and 7 patients respectively with 45,XY,der(14;15), 1 and 4 patients respectively with 45,XY,der(13;22),and 1 and 10 patients respectively with 45,XY,der(14;22). RESULTS: Alternate segregation mode is predominant in our group of Robertsonian translocation carriers with 73.45% ±8.05 of balanced spermatozoa (min 50.92%; max 89.99%). These results are compliant with the data from literature for all translocations types (p > 0.05) and are consistent among the different types of Robertsonian translocations (p > 0.05) except for der(13;15) that exhibit lower balanced spermatozoa rates (p < 0.05 versus der(13;14), der(14;21), (13;21) and der(15;22)). Normozoospermic patients also display a significantly (p < 0.01) higher rate of balanced sperm cells than patients with abnormal seminograms whatever the defect implied. CONCLUSIONS: According to the discrepancies observed between der(13;15) and all the other Rob T carriers, the differences observed among patients presenting normal and abnormal sperm parameters and the input in genetical counselling, sperm FISH does not seem obsolete for these patients. Moreover, it seems important to collect more data for rare RobT.


CONTEXTE: Le mode de ségrégation chromosomique le plus fréquemment observé chez les patients porteurs de translocation robertsonienne est. un mode équilibré. Les données semblent varier peu selon la translocation analysée. La relative constance des résultats dans le cas de ces translocations robertsoniennes rend elle inutile ces analyses chromosomiques pour ces patients? PATIENTS ET MÉTHODES: Nous avons analysé de façon rétrospective les données spermatiques et de ségrégation méiotique de 23 patients porteurs de translocation robertsonienne, de 2003 à 2017 et comparé les résultats observés à ceux décrits dans la littérature pour 187 patients. RÉSULTATS: Le mode de ségrégation alterne est. prépondérant dans notre série de patients avec 73.45% ±8.05 de spermatozoïdes équilibrés (min 50.92%; max 89.99%). Ces résultats sont en accord avec les données de la littérature, toutes translocations confondues et selon le type de translocation (p > 0.05) sauf pour la translocation der(13;15) où ces taux sont significativement plus faibles (p < 0.05 vs der(13;14), der(14;21), (13;21) et der(15;22)). Nous observons également des taux de spermatozoïdes équilibrés significativement plus élevés chez les patients à spermogramme normal (p < 0.01). CONCLUSIONS: Les différences observées dans les taux d'aneuploïdies entre les translocations der(13;15) et les autres translocations robertsoniennes et entre les porteurs de translocation à spermogramme normal ou altéré, et l'utilité de ces données dans le conseil génétique conduisent à poursuivre l'analyse systématique de la ségrégation méiotique pour les patients porteurs de translocations robertsoniennes et ceci particulièrement pour les translocations rares.

17.
Eur J Hum Genet ; 24(6): 844-51, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26508576

RESUMEN

Although 22q11.2 deletion syndrome (22q11.2DS) is the most recurrent human microdeletion syndrome associated with a highly variable phenotype, little is known about the condition's true incidence and the phenotype at diagnosis. We performed a multicenter, retrospective analysis of postnatally diagnosed patients recruited by members of the Association des Cytogénéticiens de Langue Française (the French-Speaking Cytogeneticists Association). Clinical and cytogenetic data on 749 cases diagnosed between 1995 and 2013 were collected by 31 French cytogenetics laboratories. The most frequent reasons for referral of postnatally diagnosed cases were a congenital heart defect (CHD, 48.6%), facial dysmorphism (49.7%) and developmental delay (40.7%). Since 2007 (the year in which array comparative genomic hybridization (aCGH) was introduced for the routine screening of patients with intellectual disability), almost all cases have been diagnosed using FISH (96.1%). Only 15 cases (all with an atypical phenotype) were diagnosed with aCGH; the deletion size ranged from 745 to 2904 kb. The deletion was inherited in 15.0% of cases and was of maternal origin in 85.5% of the latter. This is the largest yet documented cohort of patients with 22q11.2DS (the most commonly diagnosed microdeletion) from the same population. French cytogenetics laboratories diagnosed at least 108 affected patients (including fetuses) per year from among a national population of ∼66 million. As observed for prenatal diagnoses, CHDs were the most frequently detected malformation in postnatal diagnoses. The most common CHD in postnatal diagnoses was an isolated septal defect.


Asunto(s)
Síndrome de Deleción 22q11/diagnóstico , Pruebas Genéticas/estadística & datos numéricos , Síndrome de Deleción 22q11/epidemiología , Síndrome de Deleción 22q11/genética , Adolescente , Adulto , Niño , Preescolar , Hibridación Genómica Comparativa , Femenino , Francia , Pruebas Genéticas/métodos , Humanos , Hibridación Fluorescente in Situ , Lactante , Recién Nacido , Masculino , Herencia Paterna
18.
Eur J Hum Genet ; 21(10): 1079-84, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23340515

RESUMEN

Williams-Beuren syndrome (WBS) is a neurodevelopmental disorder with multi-systemic manifestations, caused by a heterozygous segmental deletion of 1.55-1.83 Mb at chromosomal band 7q11.23. The deletion can include the NCF1 gene that encodes the p47(phox) protein, a component of the leukocyte NADPH oxidase enzyme, which is essential for the defense against microbial pathogens. It has been postulated that WBS patients with two functional NCF1 genes are more susceptible to occurrence of hypertension than WBS patients with only one functional NCF1 gene. We now describe two extremely rare WBS patients without any functional NCF1 gene, because of a mutation in NCF1 on the allele not carrying the NCF1-removing WBS deletion. These two patients suffer from chronic granulomatous disease with increased microbial infections in addition to WBS. Interestingly, one of these patients did suffer from hypertension, indicating that other factors than NADPH oxidase in vascular tissue may be involved in causing hypertension.


Asunto(s)
Enfermedad Granulomatosa Crónica/genética , NADPH Oxidasas/deficiencia , Síndrome de Williams/genética , Adolescente , Alelos , Preescolar , Eliminación de Gen , Enfermedad Granulomatosa Crónica/complicaciones , Enfermedad Granulomatosa Crónica/diagnóstico , Enfermedad Granulomatosa Crónica/metabolismo , Humanos , Masculino , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Neutrófilos/metabolismo , Síndrome de Williams/complicaciones , Síndrome de Williams/diagnóstico , Síndrome de Williams/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA